libnfc/src/lib/nfc.c

1006 lines
33 KiB
C
Raw Normal View History

/**
* Public platform independent Near Field Communication (NFC) library
*
* Copyright (C) 2009, Roel Verdult
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*
*
2009-11-04 11:14:17 +01:00
* @file nfc.c
* @brief
*/
2009-04-29 14:47:41 +02:00
2009-11-04 11:14:17 +01:00
#include "nfc.h"
2009-04-29 14:47:41 +02:00
#include <stdio.h>
#include <stddef.h>
2009-04-29 14:47:41 +02:00
#include <string.h>
2009-11-04 11:14:17 +01:00
#include "drivers.h"
#include "nfc-messages.h"
2009-11-04 11:14:17 +01:00
#include "../../config.h"
2009-04-29 14:47:41 +02:00
// Registers and symbols masks used to covers parts within a register
#define REG_CIU_TX_MODE 0x6302
#define SYMBOL_TX_CRC_ENABLE 0x80
#define REG_CIU_RX_MODE 0x6303
#define SYMBOL_RX_CRC_ENABLE 0x80
#define SYMBOL_RX_NO_ERROR 0x08
#define SYMBOL_RX_MULTIPLE 0x04
#define REG_CIU_TX_AUTO 0x6305
#define SYMBOL_FORCE_100_ASK 0x40
#define SYMBOL_AUTO_WAKE_UP 0x20
#define SYMBOL_INITIAL_RF_ON 0x04
#define REG_CIU_MANUAL_RCV 0x630D
#define SYMBOL_PARITY_DISABLE 0x10
#define REG_CIU_STATUS2 0x6338
#define SYMBOL_MF_CRYPTO1_ON 0x08
#define REG_CIU_CONTROL 0x633C
#define SYMBOL_INITIATOR 0x10
#define SYMBOL_RX_LAST_BITS 0x07
#define REG_CIU_BIT_FRAMING 0x633D
#define SYMBOL_TX_LAST_BITS 0x07
// Internal parameters flags
#define PARAM_NONE 0x00
#define PARAM_NAD_USED 0x01
#define PARAM_DID_USED 0x02
#define PARAM_AUTO_ATR_RES 0x04
#define PARAM_AUTO_RATS 0x10
#define PARAM_14443_4_PICC 0x20
#define PARAM_NO_AMBLE 0x40
// Radio Field Configure Items // Configuration Data length
#define RFCI_FIELD 0x01 // 1
#define RFCI_TIMING 0x02 // 3
#define RFCI_RETRY_DATA 0x04 // 1
#define RFCI_RETRY_SELECT 0x05 // 3
#define RFCI_ANALOG_TYPE_A_106 0x0A // 11
#define RFCI_ANALOG_TYPE_A_212_424 0x0B // 8
#define RFCI_ANALOG_TYPE_B 0x0C // 3
#define RFCI_ANALOG_TYPE_14443_4 0x0D // 9
2009-04-29 14:47:41 +02:00
// PN53X configuration
const byte_t pncmd_get_firmware_version [ 2] = { 0xD4,0x02 };
const byte_t pncmd_get_general_status [ 2] = { 0xD4,0x04 };
const byte_t pncmd_get_register [ 4] = { 0xD4,0x06 };
const byte_t pncmd_set_register [ 5] = { 0xD4,0x08 };
const byte_t pncmd_set_parameters [ 3] = { 0xD4,0x12 };
const byte_t pncmd_rf_configure [ 14] = { 0xD4,0x32 };
2009-04-29 14:47:41 +02:00
// Reader
const byte_t pncmd_initiator_list_passive [264] = { 0xD4,0x4A };
const byte_t pncmd_initiator_jump_for_dep [ 68] = { 0xD4,0x56 };
const byte_t pncmd_initiator_select [ 3] = { 0xD4,0x54 };
const byte_t pncmd_initiator_deselect [ 3] = { 0xD4,0x44,0x00 };
const byte_t pncmd_initiator_release [ 3] = { 0xD4,0x52,0x00 };
const byte_t pncmd_initiator_set_baud_rate [ 5] = { 0xD4,0x4E };
const byte_t pncmd_initiator_exchange_data [265] = { 0xD4,0x40 };
const byte_t pncmd_initiator_exchange_raw_data [266] = { 0xD4,0x42 };
const byte_t pncmd_initiator_auto_poll [ 5] = { 0xD4,0x60 };
2009-04-29 14:47:41 +02:00
// Target
const byte_t pncmd_target_get_data [ 2] = { 0xD4,0x86 };
const byte_t pncmd_target_set_data [264] = { 0xD4,0x8E };
const byte_t pncmd_target_init [ 39] = { 0xD4,0x8C };
const byte_t pncmd_target_virtual_card [ 4] = { 0xD4,0x14 };
const byte_t pncmd_target_receive [ 2] = { 0xD4,0x88 };
const byte_t pncmd_target_send [264] = { 0xD4,0x90 };
const byte_t pncmd_target_get_status [ 2] = { 0xD4,0x8A };
bool pn53x_transceive(const nfc_device_t* pnd, const byte_t* pbtTx, const size_t szTxLen, byte_t* pbtRx, size_t* pszRxLen)
2009-04-29 14:47:41 +02:00
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
// Check if receiving buffers are available, if not, replace them
if (!pszRxLen || !pbtRx)
{
pbtRx = abtRx;
pszRxLen = &szRxLen;
}
*pszRxLen = MAX_FRAME_LEN;
2009-04-29 14:47:41 +02:00
// Call the tranceive callback function of the current device
if (!pnd->pdc->transceive(pnd->ds,pbtTx,szTxLen,pbtRx,pszRxLen)) return false;
2009-04-29 14:47:41 +02:00
// Make sure there was no failure reported by the PN53X chip (0x00 == OK)
if (pbtRx[0] != 0) return false;
2009-04-29 14:47:41 +02:00
// Succesful transmission
return true;
}
byte_t pn53x_get_reg(const nfc_device_t* pnd, uint16_t ui16Reg)
2009-04-29 14:47:41 +02:00
{
uint8_t ui8Value;
size_t szValueLen = 1;
byte_t abtCmd[sizeof(pncmd_get_register)];
memcpy(abtCmd,pncmd_get_register,sizeof(pncmd_get_register));
abtCmd[2] = ui16Reg >> 8;
abtCmd[3] = ui16Reg & 0xff;
// We can not use pn53x_transceive() because abtRx[0] gives no status info
pnd->pdc->transceive(pnd->ds,abtCmd,4,&ui8Value,&szValueLen);
2009-04-29 14:47:41 +02:00
return ui8Value;
}
bool pn53x_set_reg(const nfc_device_t* pnd, uint16_t ui16Reg, uint8_t ui8SybmolMask, uint8_t ui8Value)
2009-04-29 14:47:41 +02:00
{
byte_t abtCmd[sizeof(pncmd_set_register)];
memcpy(abtCmd,pncmd_set_register,sizeof(pncmd_set_register));
abtCmd[2] = ui16Reg >> 8;
abtCmd[3] = ui16Reg & 0xff;
abtCmd[4] = ui8Value | (pn53x_get_reg(pnd,ui16Reg) & (~ui8SybmolMask));
// We can not use pn53x_transceive() because abtRx[0] gives no status info
return pnd->pdc->transceive(pnd->ds,abtCmd,5,NULL,NULL);
2009-04-29 14:47:41 +02:00
}
bool pn53x_set_parameters(const nfc_device_t* pnd, uint8_t ui8Value)
2009-04-29 14:47:41 +02:00
{
byte_t abtCmd[sizeof(pncmd_set_parameters)];
memcpy(abtCmd,pncmd_set_parameters,sizeof(pncmd_set_parameters));
abtCmd[2] = ui8Value;
// We can not use pn53x_transceive() because abtRx[0] gives no status info
return pnd->pdc->transceive(pnd->ds,abtCmd,3,NULL,NULL);
2009-04-29 14:47:41 +02:00
}
bool pn53x_set_tx_bits(const nfc_device_t* pnd, uint8_t ui8Bits)
2009-04-29 14:47:41 +02:00
{
// Test if we need to update the transmission bits register setting
if (pnd->ui8TxBits != ui8Bits)
2009-04-29 14:47:41 +02:00
{
// Set the amount of transmission bits in the PN53X chip register
if (!pn53x_set_reg(pnd,REG_CIU_BIT_FRAMING,SYMBOL_TX_LAST_BITS,ui8Bits)) return false;
2009-09-08 10:14:36 +02:00
2009-04-29 14:47:41 +02:00
// Store the new setting
((nfc_device_t*)pnd)->ui8TxBits = ui8Bits;
2009-04-29 14:47:41 +02:00
}
return true;
}
bool pn53x_wrap_frame(const byte_t* pbtTx, const size_t szTxBits, const byte_t* pbtTxPar, byte_t* pbtFrame, size_t* pszFrameBits)
2009-04-29 14:47:41 +02:00
{
2009-07-16 14:09:06 +02:00
byte_t btFrame;
byte_t btData;
uint32_t uiBitPos;
uint32_t uiDataPos = 0;
size_t szBitsLeft = szTxBits;
2009-04-29 14:47:41 +02:00
// Make sure we should frame at least something
if (szBitsLeft == 0) return false;
2009-09-08 10:14:36 +02:00
2009-04-29 14:47:41 +02:00
// Handle a short response (1byte) as a special case
if (szBitsLeft < 9)
2009-04-29 14:47:41 +02:00
{
*pbtFrame = *pbtTx;
*pszFrameBits = szTxBits;
2009-04-29 14:47:41 +02:00
return true;
}
// We start by calculating the frame length in bits
*pszFrameBits = szTxBits + (szTxBits/8);
2009-09-08 10:14:36 +02:00
2009-04-29 14:47:41 +02:00
// Parse the data bytes and add the parity bits
// This is really a sensitive process, mirror the frame bytes and append parity bits
// buffer = mirror(frame-byte) + parity + mirror(frame-byte) + parity + ...
// split "buffer" up in segments of 8 bits again and mirror them
// air-bytes = mirror(buffer-byte) + mirror(buffer-byte) + mirror(buffer-byte) + ..
while(true)
{
// Reset the temporary frame byte;
btFrame = 0;
for (uiBitPos=0; uiBitPos<8; uiBitPos++)
{
// Copy as much data that fits in the frame byte
btData = mirror(pbtTx[uiDataPos]);
btFrame |= (btData >> uiBitPos);
// Save this frame byte
*pbtFrame = mirror(btFrame);
// Set the remaining bits of the date in the new frame byte and append the parity bit
btFrame = (btData << (8-uiBitPos));
btFrame |= ((pbtTxPar[uiDataPos] & 0x01) << (7-uiBitPos));
// Backup the frame bits we have so far
pbtFrame++;
*pbtFrame = mirror(btFrame);
// Increase the data (without parity bit) position
uiDataPos++;
// Test if we are done
if (szBitsLeft < 9) return true;
szBitsLeft -= 8;
2009-04-29 14:47:41 +02:00
}
// Every 8 data bytes we lose one frame byte to the parities
pbtFrame++;
}
}
bool pn53x_unwrap_frame(const byte_t* pbtFrame, const size_t szFrameBits, byte_t* pbtRx, size_t* pszRxBits, byte_t* pbtRxPar)
2009-04-29 14:47:41 +02:00
{
2009-07-16 14:09:06 +02:00
byte_t btFrame;
byte_t btData;
uint8_t uiBitPos;
uint32_t uiDataPos = 0;
2009-07-16 14:09:06 +02:00
byte_t* pbtFramePos = (byte_t*) pbtFrame;
size_t szBitsLeft = szFrameBits;
2009-04-29 14:47:41 +02:00
// Make sure we should frame at least something
if (szBitsLeft == 0) return false;
2009-04-29 14:47:41 +02:00
// Handle a short response (1byte) as a special case
if (szBitsLeft < 9)
2009-04-29 14:47:41 +02:00
{
*pbtRx = *pbtFrame;
*pszRxBits = szFrameBits;
2009-04-29 14:47:41 +02:00
return true;
}
2009-09-08 10:14:36 +02:00
2009-04-29 14:47:41 +02:00
// Calculate the data length in bits
*pszRxBits = szFrameBits - (szFrameBits/9);
2009-04-29 14:47:41 +02:00
// Parse the frame bytes, remove the parity bits and store them in the parity array
// This process is the reverse of WrapFrame(), look there for more info
while(true)
{
for (uiBitPos=0; uiBitPos<8; uiBitPos++)
{
btFrame = mirror(pbtFramePos[uiDataPos]);
btData = (btFrame << uiBitPos);
btFrame = mirror(pbtFramePos[uiDataPos+1]);
btData |= (btFrame >> (8-uiBitPos));
pbtRx[uiDataPos] = mirror(btData);
if(pbtRxPar != NULL) pbtRxPar[uiDataPos] = ((btFrame >> (7-uiBitPos)) & 0x01);
2009-04-29 14:47:41 +02:00
// Increase the data (without parity bit) position
uiDataPos++;
// Test if we are done
if (szBitsLeft < 9) return true;
szBitsLeft -= 9;
2009-04-29 14:47:41 +02:00
}
// Every 8 data bytes we lose one frame byte to the parities
pbtFramePos++;
}
}
nfc_device_t* nfc_connect(nfc_device_desc_t* pndd)
2009-04-29 14:47:41 +02:00
{
nfc_device_t* pnd;
uint32_t uiDev;
2009-07-16 14:09:06 +02:00
byte_t abtFw[4];
size_t szFwLen = sizeof(abtFw);
2009-04-29 14:47:41 +02:00
// Search through the device list for an available device
2009-11-04 11:14:17 +01:00
for (uiDev=0; uiDev<sizeof(drivers_callbacks_list)/sizeof(drivers_callbacks_list[0]); uiDev++)
2009-04-29 14:47:41 +02:00
{
if (pndd == NULL) {
// No device description specified: try to automatically claim a device
pnd = drivers_callbacks_list[uiDev].connect(pndd);
} else {
// Specific device is requested: using device description pndd
2009-11-04 11:14:17 +01:00
if( 0 != strcmp(drivers_callbacks_list[uiDev].acDriver, pndd->pcDriver ) )
{
2009-11-04 11:14:17 +01:00
DBG("Looking for %s, found %s... Skip it.", pndd->pcDriver, drivers_callbacks_list[uiDev].acDriver);
continue;
} else {
2009-11-04 11:14:17 +01:00
DBG("Looking for %s, found %s... Use it.", pndd->pcDriver, drivers_callbacks_list[uiDev].acDriver);
pnd = drivers_callbacks_list[uiDev].connect(pndd);
}
}
2009-04-29 14:47:41 +02:00
// Test if the connection was successful
if (pnd != INVALID_DEVICE_INFO)
2009-04-29 14:47:41 +02:00
{
DBG("[%s] has been claimed.", pnd->acName);
2009-04-29 14:47:41 +02:00
// Great we have claimed a device
pnd->pdc = &(drivers_callbacks_list[uiDev]);
2009-04-29 14:47:41 +02:00
// Try to retrieve PN53x chip revision
// We can not use pn53x_transceive() because abtRx[0] gives no status info
if (!pnd->pdc->transceive(pnd->ds,pncmd_get_firmware_version,2,abtFw,&szFwLen))
2009-04-29 14:47:41 +02:00
{
// Failed to get firmware revision??, whatever...let's disconnect and clean up and return err
ERR("Failed to get firmware revision for: %s", pnd->acName);
pnd->pdc->disconnect(pnd);
2009-04-29 14:47:41 +02:00
return INVALID_DEVICE_INFO;
}
// Add the firmware revision to the device name, PN531 gives 2 bytes info, but PN532 gives 4
switch(pnd->ct)
2009-04-29 14:47:41 +02:00
{
case CT_PN531: sprintf(pnd->acName,"%s - PN531 v%d.%d",pnd->acName,abtFw[0],abtFw[1]); break;
case CT_PN532: sprintf(pnd->acName,"%s - PN532 v%d.%d (0x%02x)",pnd->acName,abtFw[1],abtFw[2],abtFw[3]); break;
case CT_PN533: sprintf(pnd->acName,"%s - PN533 v%d.%d (0x%02x)",pnd->acName,abtFw[1],abtFw[2],abtFw[3]); break;
2009-04-29 14:47:41 +02:00
}
// Reset the ending transmission bits register, it is unknown what the last tranmission used there
if (!pn53x_set_reg(pnd,REG_CIU_BIT_FRAMING,SYMBOL_TX_LAST_BITS,0x00)) return INVALID_DEVICE_INFO;
2009-04-29 14:47:41 +02:00
// Make sure we reset the CRC and parity to chip handling.
if (!nfc_configure(pnd,DCO_HANDLE_CRC,true)) return INVALID_DEVICE_INFO;
if (!nfc_configure(pnd,DCO_HANDLE_PARITY,true)) return INVALID_DEVICE_INFO;
2009-04-29 14:47:41 +02:00
// Deactivate the CRYPTO1 chiper, it may could cause problems when still active
if (!nfc_configure(pnd,DCO_ACTIVATE_CRYPTO1,false)) return INVALID_DEVICE_INFO;
2009-04-29 14:47:41 +02:00
return pnd;
} else {
2009-11-04 11:14:17 +01:00
DBG("No device found using driver: %s", drivers_callbacks_list[uiDev].acDriver);
}
2009-04-29 14:47:41 +02:00
}
// To bad, no reader is ready to be claimed
return INVALID_DEVICE_INFO;
}
void nfc_disconnect(nfc_device_t* pnd)
2009-04-29 14:47:41 +02:00
{
// Release and deselect all active communications
nfc_initiator_deselect_tag(pnd);
2009-04-29 14:47:41 +02:00
// Disconnect, clean up and release the device
pnd->pdc->disconnect(pnd);
2009-04-29 14:47:41 +02:00
}
bool nfc_configure(nfc_device_t* pnd, const dev_config_option dco, const bool bEnable)
2009-04-29 14:47:41 +02:00
{
byte_t btValue;
byte_t abtCmd[sizeof(pncmd_rf_configure)];
memcpy(abtCmd,pncmd_rf_configure,sizeof(pncmd_rf_configure));
2009-04-29 14:47:41 +02:00
// Make sure we are dealing with a active device
if (!pnd->bActive) return false;
2009-04-29 14:47:41 +02:00
switch(dco)
{
case DCO_HANDLE_CRC:
// Enable or disable automatic receiving/sending of CRC bytes
// TX and RX are both represented by the symbol 0x80
btValue = (bEnable) ? 0x80 : 0x00;
if (!pn53x_set_reg(pnd,REG_CIU_TX_MODE,SYMBOL_TX_CRC_ENABLE,btValue)) return false;
if (!pn53x_set_reg(pnd,REG_CIU_RX_MODE,SYMBOL_RX_CRC_ENABLE,btValue)) return false;
pnd->bCrc = bEnable;
2009-04-29 14:47:41 +02:00
break;
case DCO_HANDLE_PARITY:
// Handle parity bit by PN53X chip or parse it as data bit
btValue = (bEnable) ? 0x00 : SYMBOL_PARITY_DISABLE;
if (!pn53x_set_reg(pnd,REG_CIU_MANUAL_RCV,SYMBOL_PARITY_DISABLE,btValue)) return false;
pnd->bPar = bEnable;
2009-04-29 14:47:41 +02:00
break;
case DCO_ACTIVATE_FIELD:
abtCmd[2] = RFCI_FIELD;
abtCmd[3] = (bEnable) ? 1 : 0;
// We can not use pn53x_transceive() because abtRx[0] gives no status info
if (!pnd->pdc->transceive(pnd->ds,abtCmd,4,NULL,NULL)) return false;
2009-04-29 14:47:41 +02:00
break;
case DCO_ACTIVATE_CRYPTO1:
btValue = (bEnable) ? SYMBOL_MF_CRYPTO1_ON : 0x00;
if (!pn53x_set_reg(pnd,REG_CIU_STATUS2,SYMBOL_MF_CRYPTO1_ON,btValue)) return false;
2009-04-29 14:47:41 +02:00
break;
case DCO_INFINITE_SELECT:
// Retry format: 0x00 means only 1 try, 0xff means infinite
abtCmd[2] = RFCI_RETRY_SELECT;
abtCmd[3] = (bEnable) ? 0xff : 0x00; // MxRtyATR, default: active = 0xff, passive = 0x02
abtCmd[4] = (bEnable) ? 0xff : 0x00; // MxRtyPSL, default: 0x01
abtCmd[5] = (bEnable) ? 0xff : 0x00; // MxRtyPassiveActivation, default: 0xff
// We can not use pn53x_transceive() because abtRx[0] gives no status info
if (!pnd->pdc->transceive(pnd->ds,abtCmd,6,NULL,NULL)) return false;
2009-04-29 14:47:41 +02:00
break;
case DCO_ACCEPT_INVALID_FRAMES:
btValue = (bEnable) ? SYMBOL_RX_NO_ERROR : 0x00;
if (!pn53x_set_reg(pnd,REG_CIU_RX_MODE,SYMBOL_RX_NO_ERROR,btValue)) return false;
2009-04-29 14:47:41 +02:00
break;
case DCO_ACCEPT_MULTIPLE_FRAMES:
btValue = (bEnable) ? SYMBOL_RX_MULTIPLE : 0x00;
if (!pn53x_set_reg(pnd,REG_CIU_RX_MODE,SYMBOL_RX_MULTIPLE,btValue)) return false;
2009-04-29 14:47:41 +02:00
return true;
break;
}
2009-04-29 14:47:41 +02:00
// When we reach this, the configuration is completed and succesful
return true;
}
bool nfc_initiator_init(const nfc_device_t* pnd)
2009-04-29 14:47:41 +02:00
{
// Make sure we are dealing with a active device
if (!pnd->bActive) return false;
2009-04-29 14:47:41 +02:00
// Set the PN53X to force 100% ASK Modified miller decoding (default for 14443A cards)
if (!pn53x_set_reg(pnd,REG_CIU_TX_AUTO,SYMBOL_FORCE_100_ASK,0x40)) return false;
2009-04-29 14:47:41 +02:00
// Configure the PN53X to be an Initiator or Reader/Writer
if (!pn53x_set_reg(pnd,REG_CIU_CONTROL,SYMBOL_INITIATOR,0x10)) return false;
2009-04-29 14:47:41 +02:00
return true;
}
bool nfc_initiator_select_dep_target(const nfc_device_t* pnd, const init_modulation im, const byte_t* pbtPidData, const size_t szPidDataLen, const byte_t* pbtNFCID3i, const size_t szNFCID3iDataLen, const byte_t *pbtGbData, const size_t szGbDataLen, tag_info* pti)
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
size_t offset;
byte_t abtCmd[sizeof(pncmd_initiator_jump_for_dep)];
memcpy(abtCmd,pncmd_initiator_jump_for_dep,sizeof(pncmd_initiator_jump_for_dep));
if(im == IM_ACTIVE_DEP) {
abtCmd[2] = 0x01; /* active DEP */
}
abtCmd[3] = 0x00; /* baud rate = 106kbps */
offset = 5;
if(pbtPidData && im != IM_ACTIVE_DEP) { /* can't have passive initiator data when using active mode */
abtCmd[4] |= 0x01;
memcpy(abtCmd+offset,pbtPidData,szPidDataLen);
offset+= szPidDataLen;
}
if(pbtNFCID3i) {
abtCmd[4] |= 0x02;
memcpy(abtCmd+offset,pbtNFCID3i,szNFCID3iDataLen);
offset+= szNFCID3iDataLen;
}
if(pbtGbData) {
abtCmd[4] |= 0x04;
memcpy(abtCmd+offset,pbtGbData,szGbDataLen);
offset+= szGbDataLen;
}
// Try to find a target, call the transceive callback function of the current device
if (!pn53x_transceive(pnd,abtCmd,5+szPidDataLen+szNFCID3iDataLen+szGbDataLen,abtRx,&szRxLen)) return false;
// Make sure one target has been found, the PN53X returns 0x00 if none was available
if (abtRx[1] != 1) return false;
// Is a target info struct available
if (pti)
{
memcpy(pti->tid.NFCID3i,abtRx+2,10);
pti->tid.btDID = abtRx[12];
pti->tid.btBSt = abtRx[13];
pti->tid.btBRt = abtRx[14];
}
return true;
}
bool nfc_initiator_select_tag(const nfc_device_t* pnd, const init_modulation im, const byte_t* pbtInitData, const size_t szInitDataLen, tag_info* pti)
2009-04-29 14:47:41 +02:00
{
byte_t abtInit[MAX_FRAME_LEN];
size_t szInitLen;
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
byte_t abtCmd[sizeof(pncmd_initiator_list_passive)];
memcpy(abtCmd,pncmd_initiator_list_passive,sizeof(pncmd_initiator_list_passive));
2009-09-24 16:33:42 +02:00
// Make sure we are dealing with a active device
if (!pnd->bActive) return false;
2009-04-29 14:47:41 +02:00
abtCmd[2] = 1; // MaxTg, we only want to select 1 tag at the time
abtCmd[3] = im; // BrTy, the type of init modulation used for polling a passive tag
2009-04-29 14:47:41 +02:00
switch(im)
{
case IM_ISO14443A_106:
switch (szInitDataLen)
{
case 7:
abtInit[0] = 0x88;
memcpy(abtInit+1,pbtInitData,7);
szInitLen = 8;
break;
case 10:
abtInit[0] = 0x88;
memcpy(abtInit+1,pbtInitData,3);
abtInit[4] = 0x88;
memcpy(abtInit+4,pbtInitData+3,7);
szInitLen = 12;
break;
case 4:
default:
memcpy(abtInit,pbtInitData,szInitDataLen);
szInitLen = szInitDataLen;
break;
}
break;
default:
memcpy(abtInit,pbtInitData,szInitDataLen);
szInitLen = szInitDataLen;
break;
}
2009-04-29 14:47:41 +02:00
// Set the optional initiator data (used for Felica, ISO14443B, Topaz Polling or for ISO14443A selecting a specific UID).
if (pbtInitData) memcpy(abtCmd+4,abtInit,szInitLen);
2009-04-29 14:47:41 +02:00
// Try to find a tag, call the tranceive callback function of the current device
szRxLen = MAX_FRAME_LEN;
// We can not use pn53x_transceive() because abtRx[0] gives no status info
if (!pnd->pdc->transceive(pnd->ds,abtCmd,4+szInitLen,abtRx,&szRxLen)) return false;
2009-04-29 14:47:41 +02:00
// Make sure one tag has been found, the PN53X returns 0x00 if none was available
if (abtRx[0] != 1) return false;
2009-04-29 14:47:41 +02:00
// Is a tag info struct available
if (pti)
{
// Fill the tag info struct with the values corresponding to this init modulation
switch(im)
{
case IM_ISO14443A_106:
// Somehow they switched the lower and upper ATQA bytes around for the PN531 chipset
if (pnd->ct == CT_PN531)
2009-04-29 14:47:41 +02:00
{
pti->tia.abtAtqa[0] = abtRx[3];
pti->tia.abtAtqa[1] = abtRx[2];
} else {
memcpy(pti->tia.abtAtqa,abtRx+2,2);
}
pti->tia.btSak = abtRx[4];
// Copy the NFCID1
pti->tia.szUidLen = abtRx[5];
memcpy(pti->tia.abtUid,abtRx+6,pti->tia.szUidLen);
2009-04-29 14:47:41 +02:00
// Did we received an optional ATS (Smardcard ATR)
if (szRxLen > pti->tia.szUidLen+6)
2009-04-29 14:47:41 +02:00
{
pti->tia.szAtsLen = abtRx[pti->tia.szUidLen+6];
memcpy(pti->tia.abtAts,abtRx+pti->tia.szUidLen+6,pti->tia.szAtsLen);
2009-04-29 14:47:41 +02:00
} else {
pti->tia.szAtsLen = 0;
2009-04-29 14:47:41 +02:00
}
break;
case IM_FELICA_212:
case IM_FELICA_424:
// Store the mandatory info
pti->tif.szLen = abtRx[2];
2009-04-29 14:47:41 +02:00
pti->tif.btResCode = abtRx[3];
// Copy the NFCID2t
memcpy(pti->tif.abtId,abtRx+4,8);
// Copy the felica padding
memcpy(pti->tif.abtPad,abtRx+12,8);
// Test if the System code (SYST_CODE) is available
if (szRxLen > 20)
2009-04-29 14:47:41 +02:00
{
memcpy(pti->tif.abtSysCode,abtRx+20,2);
}
break;
case IM_ISO14443B_106:
// Store the mandatory info
memcpy(pti->tib.abtAtqb,abtRx+2,12);
// Ignore the 0x1D byte, and just store the 4 byte id
memcpy(pti->tib.abtId,abtRx+15,4);
pti->tib.btParam1 = abtRx[19];
pti->tib.btParam2 = abtRx[20];
pti->tib.btParam3 = abtRx[21];
pti->tib.btParam4 = abtRx[22];
// Test if the Higher layer (INF) is available
if (szRxLen > 22)
2009-04-29 14:47:41 +02:00
{
pti->tib.szInfLen = abtRx[23];
memcpy(pti->tib.abtInf,abtRx+24,pti->tib.szInfLen);
2009-04-29 14:47:41 +02:00
} else {
pti->tib.szInfLen = 0;
2009-04-29 14:47:41 +02:00
}
break;
case IM_JEWEL_106:
// Store the mandatory info
memcpy(pti->tij.btSensRes,abtRx+2,2);
memcpy(pti->tij.btId,abtRx+4,4);
break;
default:
// Should not be possible, so whatever...
break;
}
}
return true;
}
bool nfc_initiator_deselect_tag(const nfc_device_t* pnd)
2009-04-29 14:47:41 +02:00
{
return (pn53x_transceive(pnd,pncmd_initiator_deselect,3,NULL,NULL));
2009-04-29 14:47:41 +02:00
}
bool nfc_initiator_transceive_bits(const nfc_device_t* pnd, const byte_t* pbtTx, const size_t szTxBits, const byte_t* pbtTxPar, byte_t* pbtRx, size_t* pszRxBits, byte_t* pbtRxPar)
2009-04-29 14:47:41 +02:00
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
size_t szFrameBits = 0;
size_t szFrameBytes = 0;
uint8_t ui8Bits = 0;
byte_t abtCmd[sizeof(pncmd_initiator_exchange_raw_data)];
memcpy(abtCmd,pncmd_initiator_exchange_raw_data,sizeof(pncmd_initiator_exchange_raw_data));
2009-04-29 14:47:41 +02:00
// Check if we should prepare the parity bits ourself
if (!pnd->bPar)
2009-04-29 14:47:41 +02:00
{
// Convert data with parity to a frame
pn53x_wrap_frame(pbtTx,szTxBits,pbtTxPar,abtCmd+2,&szFrameBits);
2009-04-29 14:47:41 +02:00
} else {
szFrameBits = szTxBits;
2009-04-29 14:47:41 +02:00
}
// Retrieve the leading bits
ui8Bits = szFrameBits%8;
2009-04-29 14:47:41 +02:00
// Get the amount of frame bytes + optional (1 byte if there are leading bits)
szFrameBytes = (szFrameBits/8)+((ui8Bits==0)?0:1);
2009-04-29 14:47:41 +02:00
// When the parity is handled before us, we just copy the data
if (pnd->bPar) memcpy(abtCmd+2,pbtTx,szFrameBytes);
2009-04-29 14:47:41 +02:00
// Set the amount of transmission bits in the PN53X chip register
if (!pn53x_set_tx_bits(pnd,ui8Bits)) return false;
2009-04-29 14:47:41 +02:00
// Send the frame to the PN53X chip and get the answer
// We have to give the amount of bytes + (the two command bytes 0xD4, 0x42)
if (!pn53x_transceive(pnd,abtCmd,szFrameBytes+2,abtRx,&szRxLen)) return false;
2009-04-29 14:47:41 +02:00
// Get the last bit-count that is stored in the received byte
ui8Bits = pn53x_get_reg(pnd,REG_CIU_CONTROL) & SYMBOL_RX_LAST_BITS;
2009-04-29 14:47:41 +02:00
// Recover the real frame length in bits
szFrameBits = ((szRxLen-1-((ui8Bits==0)?0:1))*8)+ui8Bits;
2009-04-29 14:47:41 +02:00
// Ignore the status byte from the PN53X here, it was checked earlier in pn53x_transceive()
// Check if we should recover the parity bits ourself
if (!pnd->bPar)
2009-04-29 14:47:41 +02:00
{
// Unwrap the response frame
pn53x_unwrap_frame(abtRx+1,szFrameBits,pbtRx,pszRxBits,pbtRxPar);
2009-04-29 14:47:41 +02:00
} else {
// Save the received bits
*pszRxBits = szFrameBits;
2009-04-29 14:47:41 +02:00
// Copy the received bytes
memcpy(pbtRx,abtRx+1,szRxLen-1);
2009-04-29 14:47:41 +02:00
}
// Everything went successful
return true;
}
bool nfc_initiator_transceive_dep_bytes(const nfc_device_t* pnd, const byte_t* pbtTx, const size_t szTxLen, byte_t* pbtRx, size_t* pszRxLen)
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
byte_t abtCmd[sizeof(pncmd_initiator_exchange_data)];
memcpy(abtCmd,pncmd_initiator_exchange_data,sizeof(pncmd_initiator_exchange_data));
// We can not just send bytes without parity if while the PN53X expects we handled them
if (!pnd->bPar) return false;
// Copy the data into the command frame
abtCmd[2] = 1; /* target number */
memcpy(abtCmd+3,pbtTx,szTxLen);
// To transfer command frames bytes we can not have any leading bits, reset this to zero
if (!pn53x_set_tx_bits(pnd,0)) return false;
// Send the frame to the PN53X chip and get the answer
// We have to give the amount of bytes + (the two command bytes 0xD4, 0x42)
if (!pn53x_transceive(pnd,abtCmd,szTxLen+3,abtRx,&szRxLen)) return false;
// Save the received byte count
*pszRxLen = szRxLen-1;
// Copy the received bytes
memcpy(pbtRx,abtRx+1,*pszRxLen);
// Everything went successful
return true;
}
bool nfc_initiator_transceive_bytes(const nfc_device_t* pnd, const byte_t* pbtTx, const size_t szTxLen, byte_t* pbtRx, size_t* pszRxLen)
2009-04-29 14:47:41 +02:00
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
byte_t abtCmd[sizeof(pncmd_initiator_exchange_raw_data)];
memcpy(abtCmd,pncmd_initiator_exchange_raw_data,sizeof(pncmd_initiator_exchange_raw_data));
2009-04-29 14:47:41 +02:00
// We can not just send bytes without parity if while the PN53X expects we handled them
if (!pnd->bPar) return false;
2009-04-29 14:47:41 +02:00
// Copy the data into the command frame
memcpy(abtCmd+2,pbtTx,szTxLen);
2009-04-29 14:47:41 +02:00
// To transfer command frames bytes we can not have any leading bits, reset this to zero
if (!pn53x_set_tx_bits(pnd,0)) return false;
2009-04-29 14:47:41 +02:00
// Send the frame to the PN53X chip and get the answer
// We have to give the amount of bytes + (the two command bytes 0xD4, 0x42)
if (!pn53x_transceive(pnd,abtCmd,szTxLen+2,abtRx,&szRxLen)) return false;
2009-04-29 14:47:41 +02:00
// Save the received byte count
*pszRxLen = szRxLen-1;
2009-04-29 14:47:41 +02:00
// Copy the received bytes
memcpy(pbtRx,abtRx+1,*pszRxLen);
2009-04-29 14:47:41 +02:00
// Everything went successful
return true;
}
bool nfc_initiator_mifare_cmd(const nfc_device_t* pnd, const mifare_cmd mc, const uint8_t ui8Block, mifare_param* pmp)
2009-04-29 14:47:41 +02:00
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
size_t szParamLen;
byte_t abtCmd[sizeof(pncmd_initiator_exchange_data)];
memcpy(abtCmd,pncmd_initiator_exchange_data,sizeof(pncmd_initiator_exchange_data));
2009-04-29 14:47:41 +02:00
// Make sure we are dealing with a active device
if (!pnd->bActive) return false;
2009-04-29 14:47:41 +02:00
abtCmd[2] = 0x01; // Use first target/card
abtCmd[3] = mc; // The MIFARE Classic command
abtCmd[4] = ui8Block; // The block address (1K=0x00..0x39, 4K=0x00..0xff)
2009-04-29 14:47:41 +02:00
switch (mc)
{
// Read and store command have no parameter
case MC_READ:
case MC_STORE:
szParamLen = 0;
2009-04-29 14:47:41 +02:00
break;
2009-04-29 14:47:41 +02:00
// Authenticate command
case MC_AUTH_A:
case MC_AUTH_B:
szParamLen = sizeof(mifare_param_auth);
2009-04-29 14:47:41 +02:00
break;
// Data command
case MC_WRITE:
szParamLen = sizeof(mifare_param_data);
2009-04-29 14:47:41 +02:00
break;
// Value command
case MC_DECREMENT:
case MC_INCREMENT:
case MC_TRANSFER:
szParamLen = sizeof(mifare_param_value);
2009-04-29 14:47:41 +02:00
break;
// Please fix your code, you never should reach this statement
default:
return false;
break;
}
2009-04-29 14:47:41 +02:00
// When available, copy the parameter bytes
if (szParamLen) memcpy(abtCmd+5,(byte_t*)pmp,szParamLen);
2009-04-29 14:47:41 +02:00
// Fire the mifare command
if (!pn53x_transceive(pnd,abtCmd,5+szParamLen,abtRx,&szRxLen)) return false;
2009-04-29 14:47:41 +02:00
// When we have executed a read command, copy the received bytes into the param
if (mc == MC_READ && szRxLen == 17) memcpy(pmp->mpd.abtData,abtRx+1,16);
2009-04-29 14:47:41 +02:00
// Command succesfully executed
return true;
}
bool nfc_target_init(const nfc_device_t* pnd, byte_t* pbtRx, size_t* pszRxBits)
2009-04-29 14:47:41 +02:00
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
uint8_t ui8Bits;
2009-04-29 14:47:41 +02:00
// Save the current configuration settings
bool bCrc = pnd->bCrc;
bool bPar = pnd->bPar;
byte_t abtCmd[sizeof(pncmd_target_init)];
memcpy(abtCmd,pncmd_target_init,sizeof(pncmd_target_init));
2009-04-29 14:47:41 +02:00
// Clear the target init struct, reset to all zeros
memset(abtCmd+2,0x00,37);
2009-04-29 14:47:41 +02:00
// Set ATQA (SENS_RES)
abtCmd[3] = 0x04;
abtCmd[4] = 0x00;
2009-04-29 14:47:41 +02:00
// Set SAK (SEL_RES)
abtCmd[8] = 0x20;
2009-04-29 14:47:41 +02:00
// Set UID
abtCmd[5] = 0x00;
abtCmd[6] = 0xb0;
abtCmd[7] = 0x0b;
2009-04-29 14:47:41 +02:00
// Make sure the CRC & parity are handled by the device, this is needed for target_init to work properly
if (!bCrc) nfc_configure((nfc_device_t*)pnd,DCO_HANDLE_CRC,true);
if (!bPar) nfc_configure((nfc_device_t*)pnd,DCO_HANDLE_PARITY,true);
2009-04-29 14:47:41 +02:00
// Let the PN53X be activated by the RF level detector from power down mode
if (!pn53x_set_reg(pnd,REG_CIU_TX_AUTO, SYMBOL_INITIAL_RF_ON,0x04)) return false;
2009-04-29 14:47:41 +02:00
// Request the initialization as a target, we can not use pn53x_transceive() because
// abtRx[0] contains the emulation mode (baudrate, 14443-4?, DEP and framing type)
szRxLen = MAX_FRAME_LEN;
if (!pnd->pdc->transceive(pnd->ds,abtCmd,39,abtRx,&szRxLen)) return false;
2009-04-29 14:47:41 +02:00
// Get the last bit-count that is stored in the received byte
ui8Bits = pn53x_get_reg(pnd,REG_CIU_CONTROL) & SYMBOL_RX_LAST_BITS;
2009-04-29 14:47:41 +02:00
// We are sure the parity is handled by the PN53X chip, so we handle it this way
*pszRxBits = ((szRxLen-1-((ui8Bits==0)?0:1))*8)+ui8Bits;
2009-04-29 14:47:41 +02:00
// Copy the received bytes
memcpy(pbtRx,abtRx+1,szRxLen-1);
2009-04-29 14:47:41 +02:00
// Restore the CRC & parity setting to the original value (if needed)
if (!bCrc) nfc_configure((nfc_device_t*)pnd,DCO_HANDLE_CRC,false);
if (!bPar) nfc_configure((nfc_device_t*)pnd,DCO_HANDLE_PARITY,false);
2009-04-29 14:47:41 +02:00
return true;
}
bool nfc_target_receive_bits(const nfc_device_t* pnd, byte_t* pbtRx, size_t* pszRxBits, byte_t* pbtRxPar)
2009-04-29 14:47:41 +02:00
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
size_t szFrameBits;
uint8_t ui8Bits;
2009-04-29 14:47:41 +02:00
// Try to gather a received frame from the reader
if (!pn53x_transceive(pnd,pncmd_target_receive,2,abtRx,&szRxLen)) return false;
2009-04-29 14:47:41 +02:00
// Get the last bit-count that is stored in the received byte
ui8Bits = pn53x_get_reg(pnd,REG_CIU_CONTROL) & SYMBOL_RX_LAST_BITS;
2009-04-29 14:47:41 +02:00
// Recover the real frame length in bits
szFrameBits = ((szRxLen-1-((ui8Bits==0)?0:1))*8)+ui8Bits;
2009-04-29 14:47:41 +02:00
// Ignore the status byte from the PN53X here, it was checked earlier in pn53x_transceive()
// Check if we should recover the parity bits ourself
if (!pnd->bPar)
2009-04-29 14:47:41 +02:00
{
// Unwrap the response frame
pn53x_unwrap_frame(abtRx+1,szFrameBits,pbtRx,pszRxBits,pbtRxPar);
2009-04-29 14:47:41 +02:00
} else {
// Save the received bits
*pszRxBits = szFrameBits;
2009-04-29 14:47:41 +02:00
// Copy the received bytes
memcpy(pbtRx,abtRx+1,szRxLen-1);
2009-04-29 14:47:41 +02:00
}
// Everyting seems ok, return true
return true;
2009-04-29 14:47:41 +02:00
}
bool nfc_target_receive_dep_bytes(const nfc_device_t* pnd, byte_t* pbtRx, size_t* pszRxLen)
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
// Try to gather a received frame from the reader
if (!pn53x_transceive(pnd,pncmd_target_get_data,2,abtRx,&szRxLen)) return false;
// Save the received byte count
*pszRxLen = szRxLen-1;
// Copy the received bytes
memcpy(pbtRx,abtRx+1,*pszRxLen);
// Everyting seems ok, return true
return true;
}
bool nfc_target_receive_bytes(const nfc_device_t* pnd, byte_t* pbtRx, size_t* pszRxLen)
2009-04-29 14:47:41 +02:00
{
byte_t abtRx[MAX_FRAME_LEN];
size_t szRxLen;
// Try to gather a received frame from the reader
if (!pn53x_transceive(pnd,pncmd_target_receive,2,abtRx,&szRxLen)) return false;
2009-04-29 14:47:41 +02:00
// Save the received byte count
*pszRxLen = szRxLen-1;
2009-04-29 14:47:41 +02:00
// Copy the received bytes
memcpy(pbtRx,abtRx+1,*pszRxLen);
2009-04-29 14:47:41 +02:00
// Everyting seems ok, return true
return true;
}
bool nfc_target_send_bits(const nfc_device_t* pnd, const byte_t* pbtTx, const size_t szTxBits, const byte_t* pbtTxPar)
2009-04-29 14:47:41 +02:00
{
size_t szFrameBits = 0;
size_t szFrameBytes = 0;
uint8_t ui8Bits = 0;
byte_t abtCmd[sizeof(pncmd_target_send)];
memcpy(abtCmd,pncmd_target_send,sizeof(pncmd_target_send));
2009-04-29 14:47:41 +02:00
// Check if we should prepare the parity bits ourself
if (!pnd->bPar)
2009-04-29 14:47:41 +02:00
{
// Convert data with parity to a frame
pn53x_wrap_frame(pbtTx,szTxBits,pbtTxPar,abtCmd+2,&szFrameBits);
2009-04-29 14:47:41 +02:00
} else {
szFrameBits = szTxBits;
2009-04-29 14:47:41 +02:00
}
// Retrieve the leading bits
ui8Bits = szFrameBits%8;
2009-04-29 14:47:41 +02:00
// Get the amount of frame bytes + optional (1 byte if there are leading bits)
szFrameBytes = (szFrameBits/8)+((ui8Bits==0)?0:1);
2009-04-29 14:47:41 +02:00
// When the parity is handled before us, we just copy the data
if (pnd->bPar) memcpy(abtCmd+2,pbtTx,szFrameBytes);
2009-04-29 14:47:41 +02:00
// Set the amount of transmission bits in the PN53X chip register
if (!pn53x_set_tx_bits(pnd,ui8Bits)) return false;
2009-04-29 14:47:41 +02:00
// Try to send the bits to the reader
if (!pn53x_transceive(pnd,abtCmd,szFrameBytes+2,NULL,NULL)) return false;
2009-04-29 14:47:41 +02:00
// Everyting seems ok, return true
return true;
}
bool nfc_target_send_bytes(const nfc_device_t* pnd, const byte_t* pbtTx, const size_t szTxLen)
2009-04-29 14:47:41 +02:00
{
byte_t abtCmd[sizeof(pncmd_target_send)];
memcpy(abtCmd,pncmd_target_send,sizeof(pncmd_target_send));
2009-04-29 14:47:41 +02:00
// We can not just send bytes without parity if while the PN53X expects we handled them
if (!pnd->bPar) return false;
2009-04-29 14:47:41 +02:00
// Copy the data into the command frame
memcpy(abtCmd+2,pbtTx,szTxLen);
2009-04-29 14:47:41 +02:00
// Try to send the bits to the reader
if (!pn53x_transceive(pnd,abtCmd,szTxLen+2,NULL,NULL)) return false;
2009-04-29 14:47:41 +02:00
// Everyting seems ok, return true
return true;
}
bool nfc_target_send_dep_bytes(const nfc_device_t* pnd, const byte_t* pbtTx, const size_t szTxLen)
{
byte_t abtCmd[sizeof(pncmd_target_set_data)];
memcpy(abtCmd,pncmd_target_set_data,sizeof(pncmd_target_set_data));
// We can not just send bytes without parity if while the PN53X expects we handled them
if (!pnd->bPar) return false;
// Copy the data into the command frame
memcpy(abtCmd+2,pbtTx,szTxLen);
// Try to send the bits to the reader
if (!pn53x_transceive(pnd,abtCmd,szTxLen+2,NULL,NULL)) return false;
// Everyting seems ok, return true
return true;
}
const char* nfc_version(void)
{
return PACKAGE_VERSION;
}