Add nfc-st25b example

This new example allows to operate on some ISO-14443-B ST25TB* and legacy SR* cards (read, write, info)
This commit is contained in:
Benjamin DELPY 2021-06-13 20:00:52 +02:00 committed by GitHub
parent 1dc9dcb664
commit 180fbabfe1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 614 additions and 0 deletions

View file

@ -8,6 +8,7 @@ SET(EXAMPLES-SOURCES
nfc-mfsetuid
nfc-poll
nfc-relay
nfc-st25tb
pn53x-diagnose
pn53x-sam
pn53x-tamashell

View file

@ -10,6 +10,7 @@ bin_PROGRAMS = \
nfc-mfsetuid \
nfc-poll \
nfc-relay \
nfc-st25tb \
pn53x-diagnose \
pn53x-sam
@ -63,6 +64,9 @@ nfc_mfsetuid_SOURCES = nfc-mfsetuid.c
nfc_mfsetuid_LDADD = $(top_builddir)/libnfc/libnfc.la \
$(top_builddir)/utils/libnfcutils.la
nfc_st25tb_SOURCES = nfc-st25tb.c
nfc_st25tb_LDADD = $(top_builddir)/libnfc/libnfc.la
pn53x_diagnose_SOURCES = pn53x-diagnose.c
pn53x_diagnose_LDADD = $(top_builddir)/libnfc/libnfc.la \
$(top_builddir)/utils/libnfcutils.la

609
examples/nfc-st25tb.c Normal file
View file

@ -0,0 +1,609 @@
/*-
* Free/Libre Near Field Communication (NFC) library
*
* Libnfc historical contributors:
* Copyright (C) 2009 Roel Verdult
* Copyright (C) 2009-2013 Romuald Conty
* Copyright (C) 2010-2012 Romain Tartière
* Copyright (C) 2010-2013 Philippe Teuwen
* Copyright (C) 2012-2013 Ludovic Rousseau
* See AUTHORS file for a more comprehensive list of contributors.
* Additional contributors of this file:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2 )Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Note that this license only applies on the examples, NFC library itself is under LGPL
*
*/
/**
* @file nfc-st25tb.c
* @brief Tool to operate on ISO-14443-B ST25TB* and legacy SR* cards
*/
/* Benjamin DELPY `gentilkiwi`
* https://blog.gentilkiwi.com
* benjamin@gentilkiwi.com
* Licence : https://creativecommons.org/licenses/by/4.0/
* Rely on : libnfc - https://github.com/nfc-tools/libnfc
*
* $ gcc -Wall -lnfc -o nfc-st25tb nfc-st25tb.c
* $ ./nfc-st25tb -h
*
* Tested with
* - ST25TB512-AC - (BE/Brussels/STIB ; AliExpress ones)
* - ST25TB512-AT - (FR/Lille/Ilevia ; FR/Reims/Citura)
* - SRT512 - legacy - (FR/Bordeaux/TBM)
* - SRI512 - legacy - (anonymous vending machine)
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif // HAVE_CONFIG_H
#include <unistd.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <nfc/nfc.h>
#if defined(WIN32) /* mingw compiler */
#include <getopt.h>
#endif
#define ST25TB_SR_BLOCK_MAX_SIZE 4 // for static arrays
typedef void(*get_info_specific) (uint8_t * systemArea);
typedef struct _st_data {
uint8_t chipId;
bool bIsLegacy;
const char *szName;
const char *szDatasheetUrl;
uint8_t blockSize;
uint8_t nbNormalBlock;
uint8_t bnSystem;
get_info_specific pfnGetInfo;
} st_data;
bool get_block_at(nfc_device *pnd, uint8_t block, uint8_t *data, uint8_t cbData, bool bPrintIt);
bool set_block_at(nfc_device *pnd, uint8_t block, uint8_t *data, uint8_t cbData, bool bPrintIt);
bool set_block_at_confirmed(nfc_device *pnd, uint8_t block, uint8_t *data, uint8_t cbData, bool bPrintIt);
const st_data * get_info(const nfc_target *pnt, bool bPrintIt);
void display_system_info(nfc_device *pnd, const st_data * stdata);
void print_hex(const uint8_t *pbtData, const size_t szBytes);
int main(int argc, char *argv[])
{
nfc_context *context = NULL;
nfc_device *pnd = NULL;
nfc_target nt = {0};
nfc_modulation nm = {NMT_ISO14443B, NBR_106};
const st_data * stcurrent;
int opt, res;
bool bIsBlock = false, bIsRead = false, bIsWrite = false, bIsBadCli = false;
uint8_t i, blockNumber = 0, data[ST25TB_SR_BLOCK_MAX_SIZE] = {0xff, 0xff, 0xff, 0xff}; // just in case...
size_t cbData = 0;
while(!bIsBadCli && ((opt = getopt(argc, argv, ":hib:rw:")) != -1))
{
switch(opt)
{
case 'i':
break;
case 'b':
if(optarg)
{
bIsBlock = true;
blockNumber = strtoul(optarg, NULL, 0);
}
else bIsBadCli = true;
break;
case 'r':
bIsRead = true;
break;
case 'w':
if(optarg)
{
cbData = strlen(optarg);
if((cbData == (2*2)) || ((cbData == (4*2))))
{
cbData >>= 1;
if(cbData == 2) // sr176
{
res = sscanf(optarg, "%02hhx%02hhx", data, data + 1);
}
else // all others
{
res = sscanf(optarg, "%02hhx%02hhx%02hhx%02hhx", data, data + 1, data + 2, data + 3);
}
if(res == (int) cbData)
{
bIsWrite = true;
}
}
if(!bIsWrite)
{
bIsBadCli = true;
}
}
break;
default: // includes -h
bIsBadCli = true;
}
}
if(!bIsBadCli)
{
if(bIsBlock && (bIsRead || bIsWrite))
{
if(bIsRead && bIsWrite)
{
printf("|mode : read then write\n");
}
else if(bIsRead)
{
printf("|mode : read\n");
}
else if(bIsWrite)
{
printf("|mode : write\n");
}
printf("|blk num: 0x%02hhx\n", blockNumber);
if(bIsWrite)
{
printf("|data : ");
print_hex(data, cbData);
printf("\n");
}
}
else if(!bIsRead && !bIsWrite && !bIsBlock)
{
printf("|mode : info\n");
}
else bIsBadCli = true;
}
if(!bIsBadCli)
{
nfc_init(&context);
if(context)
{
pnd = nfc_open(context, NULL);
if(pnd)
{
res = nfc_initiator_init(pnd);
if(res == NFC_SUCCESS)
{
printf("Reader : %s - via %s\n ...wait for card...\n", nfc_device_get_name(pnd), nfc_device_get_connstring(pnd));
res = nfc_initiator_list_passive_targets(pnd, nm, &nt, 1);
if(res == 0) // we don't really wanted a NMT_ISO14443B
{
nm.nmt = NMT_ISO14443B2SR; // we want a NMT_ISO14443B2SR, but needed to ask for NMT_ISO14443B before
if (nfc_initiator_select_passive_target(pnd, nm, NULL, 0, &nt) > 0)
{
stcurrent = get_info(&nt, true);
if(stcurrent)
{
printf("\n");
if(bIsBlock && (bIsRead || bIsWrite))
{
if(bIsRead)
{
get_block_at(pnd, blockNumber, NULL, 0, true);
}
if(bIsWrite)
{
set_block_at_confirmed(pnd, blockNumber, data, cbData, true);
}
}
else if(!bIsRead && !bIsWrite && !bIsBlock)
{
for(i = 0; i < stcurrent->nbNormalBlock; i++)
{
get_block_at(pnd, i, NULL, 0, true);
}
display_system_info(pnd, stcurrent);
}
}
}
}
else if(res > 0)
{
printf("ERROR - We got a NMT_ISO14443B ?\n");
}
else printf("ERROR - nfc_initiator_list_passive_targets: %i\n", res);
}
else printf("ERROR - nfc_initiator_init: %i\n", res);
nfc_close(pnd);
}
else printf("ERROR - nfc_open\n");
nfc_exit(context);
}
else printf("ERROR - nfc_init\n");
}
else
{
printf(
"Usage:\n"
" %s [-i]\n"
" %s -b N -r\n"
" %s -b N [-r] -w ABCD[EF01]\n %s -h\n"
"Options:\n"
" -i (default) information mode - will try to dump the tag content and display informations\n"
" -b N specify block number to operate on (tag dependent), needed for read (-r) and write (-w) modes\n"
" -r read mode - will try to read block (specified with -b N parameter)\n"
" -w ABCD[EF01] write mode - will try to write specicied data (2 or 4 bytes depending on tag) to block (specified with -b N parameter)\n"
" -h this help\n"
"Examples:\n"
" %s -i\n"
" Display all tag informations\n"
" %s -b 0x0e -r\n"
" Read block 0x0e (14) of the tag\n"
" %s -b 0x0d -w 0123abcd\n"
" Write block 0x0d (13) of the tag with hexadecimal value '01 23 ab cd'\n"
" %s -b 0x0c -r -w 0123abcd\n"
" Read, then write block 0x0c (12) of the tag with hexadecimal value '01 23 ab cd'\n"
"Warnings:\n"
" Be careful with: system area, counters & otp, bytes order.\n"
, argv[0], argv[0], argv[0], argv[0], argv[0], argv[0], argv[0], argv[0]);
}
return 0;
}
bool get_block_at(nfc_device *pnd, uint8_t block, uint8_t *data, uint8_t cbData, bool bPrintIt)
{
bool bRet = false;
uint8_t tx[2] = {0x08, block}, rx[ST25TB_SR_BLOCK_MAX_SIZE]; // 4 is the maximum, SR176 (only 2) will fit
int res;
res = nfc_initiator_transceive_bytes(pnd, tx, sizeof(tx), rx, sizeof(rx), 0);
if((res == 2) || (res == 4))
{
if(data)
{
if(cbData == res)
{
memcpy(data, rx, res);
bRet = true;
}
else printf("ERROR - We got %i bytes for a %hhu buffer size?\n", res, cbData);
}
else bRet = true;
if(bPrintIt)
{
printf("[0x%02hhx] ", block);
print_hex(rx, res);
printf("\n");
}
}
else if(res > 0)
{
printf("ERROR - We got %i bytes?\n", res);
}
else printf("ERROR - nfc_initiator_transceive_bytes(get): %i\n", res);
return bRet;
}
bool set_block_at(nfc_device *pnd, uint8_t block, uint8_t *data, uint8_t cbData, bool bPrintIt)
{
bool bRet = false;
uint8_t tx[2 + ST25TB_SR_BLOCK_MAX_SIZE] = {0x09, block}; // 4 is the maximum, SR176 (only 2) will fit
int res;
if(cbData <= ST25TB_SR_BLOCK_MAX_SIZE)
{
memcpy(tx + 2, data, cbData);
if(bPrintIt)
{
printf(">0x%02hhx> ", block);
print_hex(data, cbData);
printf("\n");
}
res = nfc_initiator_transceive_bytes(pnd, tx, 2 + cbData, NULL, 0, 0);
if(res == NFC_ERFTRANS) // ? :')
{
bRet = true;
}
else printf("ERROR - nfc_initiator_transceive_bytes(set): %i\n", res);
}
else printf("ERROR - Wanted to write %hhu bytes, but maximum is %hhu\n", cbData, ST25TB_SR_BLOCK_MAX_SIZE);
return bRet;
}
bool set_block_at_confirmed(nfc_device *pnd, uint8_t block, uint8_t *data, uint8_t cbData, bool bPrintIt)
{
bool bRet = false;
uint8_t buffer[ST25TB_SR_BLOCK_MAX_SIZE]; // maximum size will be checked in set_block_at
if(set_block_at(pnd, block, data, cbData, bPrintIt))
{
if(get_block_at(pnd, block, buffer, cbData, bPrintIt))
{
if(memcmp(data, buffer, cbData) == 0)
{
bRet = true;
}
else if(bPrintIt)
{
printf("WARNING - not same value readed after write\n");
}
}
}
return bRet;
}
void get_info_st25tb512(uint8_t * systemArea)
{
uint8_t b, i;
b = ((*(uint32_t *) systemArea) >> 15) & 1;
printf(" | ST reserved : ");
for(i = 0; i < 15; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n | b15 : %hhu - %sOTP (?)\n | OTP_Lock_Reg : ", b, b ? "not " : "");
for(i = 16; i < 32; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n");
for(i = 16; i < 32; i++)
{
if(!(((*(uint32_t *) systemArea) >> i) & 1))
{
printf(" block 0x%02hhx is write protected\n", i - 16);
}
}
}
void get_info_st25tb2k_4k(uint8_t * systemArea)
{
uint8_t b, i;
b = ((*(uint32_t *) systemArea) >> 15) & 1;
printf(" | ST reserved : ");
for(i = 0; i < 15; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n | b15 : %hhu - %sOTP (?)\n | OTP_Lock_RegU: ", b, b ? "not " : "");
for(i = 16; i < 24; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n | OTP_Lock_Reg : ");
for(i = 24; i < 32; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n");
if(!(((*(uint32_t *) systemArea) >> 24) & 1))
{
printf(" blocks 0x07 and 0x08 are write protected\n");
}
for(i = 25; i < 32; i++)
{
if(!(((*(uint32_t *) systemArea) >> i) & 1))
{
printf(" block 0x%02hhx is write protected\n", i - 16);
}
}
}
void get_info_sr176_legacy(uint8_t * systemArea)
{
uint8_t i;
printf(" | Fixed Chip_ID: 0x%1x\n | ST reserved : ", systemArea[0] & 0x0f);
for(i = 4; i < 8; i++)
{
printf("%hhu", ((*(uint16_t *) systemArea) >> i) & 1);
}
printf("\n | OTP_Lock_Reg : ");
for(i = 8; i < 16; i++)
{
printf("%hhu", ((*(uint16_t *) systemArea) >> i) & 1);
}
printf("\n");
for(i = 8; i < 16; i++)
{
if(((*(uint16_t *) systemArea) >> i) & 1)
{
printf(" blocks 0x%02hhx and 0x%02hhx are write protected\n", (i - 8) * 2, ((i - 8) * 2) + 1);
}
}
}
void get_info_sri_srt_512_legacy(uint8_t * systemArea)
{
uint8_t b, i;
b = ((*(uint32_t *) systemArea) >> 15) & 1;
printf(" | Fixed Chip_ID: 0x%02hhx\n | ST reserved : ", systemArea[0]);
for(i = 8; i < 15; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n | b15 : %hhu - %sOTP (?)\n | OTP_Lock_Reg : ", b, b ? "not " : "");
for(i = 16; i < 32; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n");
for(i = 16; i < 32; i++)
{
if(!(((*(uint32_t *) systemArea) >> i) & 1))
{
printf(" block 0x%02hhx is write protected\n", i - 16);
}
}
}
void get_info_sri2k_4k_srix4k_srix512_legacy(uint8_t * systemArea)
{
uint8_t i;
printf(" | Fixed Chip_ID: 0x%02hhx\n | ST reserved : ", systemArea[0]);
for(i = 8; i < 24; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n | OTP_Lock_Reg : ");
for(i = 24; i < 32; i++)
{
printf("%hhu", ((*(uint32_t *) systemArea) >> i) & 1);
}
printf("\n");
if(!(((*(uint32_t *) systemArea) >> 24) & 1))
{
printf(" blocks 0x07 and 0x08 are write protected\n");
}
for(i = 25; i < 32; i++)
{
if(!(((*(uint32_t *) systemArea) >> i) & 1))
{
printf(" block 0x%02hhx is write protected\n", i - 16);
}
}
}
const st_data STRefs[] = {
{0x1b, false, "ST25TB512-AC", "https://www.st.com/resource/en/datasheet/st25tb512-ac.pdf", 4, 16, 255, get_info_st25tb512},
{0x33, false, "ST25TB512-AT", "https://www.st.com/resource/en/datasheet/st25tb512-at.pdf", 4, 16, 255, get_info_st25tb512},
{0x3f, false, "ST25TB02K", "https://www.st.com/resource/en/datasheet/st25tb02k.pdf", 4, 64, 255, get_info_st25tb2k_4k},
{0x1f, false, "ST25TB04K", "https://www.st.com/resource/en/datasheet/st25tb04k.pdf", 4, 128, 255, get_info_st25tb2k_4k},
};
const st_data STRefs_legacy[] = {
{ 0, true, "SRI4K(s)", NULL, 4, 128, 255, NULL},
{ 2, true, "SR176", "https://www.st.com/resource/en/datasheet/sr176.pdf", 2, 15, 15, get_info_sr176_legacy},
{ 3, true, "SRIX4K", NULL, 4, 128, 255, get_info_sri2k_4k_srix4k_srix512_legacy},
{ 4, true, "SRIX512", "https://www.st.com/resource/en/datasheet/srix512.pdf", 4, 16, 255, get_info_sri2k_4k_srix4k_srix512_legacy},
{ 6, true, "SRI512", "https://www.st.com/resource/en/datasheet/sri512.pdf", 4, 16, 255, get_info_sri_srt_512_legacy},
{ 7, true, "SRI4K", "https://www.st.com/resource/en/datasheet/sri4k.pdf", 4, 128, 255, get_info_sri2k_4k_srix4k_srix512_legacy},
{12, true, "SRT512", "https://www.st.com/resource/en/datasheet/srt512.pdf", 4, 16, 255, get_info_sri_srt_512_legacy},
{15, true, "SRI2K", "https://www.st.com/resource/en/datasheet/sri2k.pdf", 4, 64, 255, get_info_sri2k_4k_srix4k_srix512_legacy},
};
const st_data * get_info(const nfc_target *pnt, bool bPrintIt)
{
const st_data *currentData = NULL;
const uint8_t *p;
uint8_t chipId, i;
if(pnt->nm.nmt == NMT_ISO14443B2SR)
{
printf("Target : %s (%s)\nUID : ", str_nfc_modulation_type(pnt->nm.nmt), str_nfc_baud_rate(pnt->nm.nbr));
print_hex(pnt->nti.nsi.abtUID, sizeof(pnt->nti.nsi.abtUID));
printf("\n");
p = pnt->nti.nsi.abtUID;
if(p[7] == 0xd0) // ST25TB* / SR*
{
chipId = p[5];
printf("Manuf : 0x%02hhx - %s\n", p[6], (p[6] == 0x02) ? "STMicroelectronics" : "other");
for(i = 0; i < (sizeof(STRefs) / sizeof(STRefs[0])); i++)
{
if(chipId == STRefs[i].chipId)
{
currentData = &STRefs[i];
break;
}
}
if(!currentData)
{
chipId >>= 2;
for(i = 0; i < (sizeof(STRefs_legacy) / sizeof(STRefs_legacy[0])); i++)
{
if(chipId == STRefs_legacy[i].chipId)
{
currentData = &STRefs_legacy[i];
break;
}
}
}
if(bPrintIt && currentData)
{
printf("ChipId : 0x%02hhx - %s%s\nSerial : 0x", currentData->chipId, currentData->szName, currentData->bIsLegacy ? " (legacy)" : "");
if(currentData->bIsLegacy)
{
printf("%1hhx", p[5] & 0x03);
}
printf("%02hhx%02hhx%02hhx%02hhx%02hhx\n|blk sz : %hhu bits\n|nb blks: %hhu\n|sys idx: %hhu\n", p[4], p[3], p[2], p[1], p[0], currentData->blockSize * 8, currentData->nbNormalBlock, currentData->bnSystem);
}
}
else printf("WARNI - Last byte of UID isn\'t 0xd0, but 0x%02hhx (not ST25TB / SR series?)\n", p[7]);
}
else printf("ERROR - not a NMT_ISO14443B2SR ?\n");
return currentData;
}
void display_system_info(nfc_device *pnd, const st_data * stdata)
{
uint8_t systemArea[ST25TB_SR_BLOCK_MAX_SIZE];
if(get_block_at(pnd, stdata->bnSystem, systemArea, stdata->blockSize, true))
{
if(stdata->pfnGetInfo)
{
stdata->pfnGetInfo(systemArea);
}
}
}
void print_hex(const uint8_t *pbtData, const size_t szBytes)
{
size_t szPos;
for (szPos = 0; szPos < szBytes; szPos++)
{
printf("%02hhx ", pbtData[szPos]);
}
}