Re-ident nfc-mfclassic.c using "indent -br -ce --line-length120 -nut -i2 -ppi 2 " command line.

This commit is contained in:
Romuald Conty 2010-06-07 09:05:35 +00:00
parent 8bac5355dd
commit 3c1a61349f

View file

@ -23,7 +23,7 @@
*/ */
#ifdef HAVE_CONFIG_H #ifdef HAVE_CONFIG_H
#include "config.h" # include "config.h"
#endif // HAVE_CONFIG_H #endif // HAVE_CONFIG_H
#include <stdio.h> #include <stdio.h>
@ -40,7 +40,7 @@
#include "mifaretag.h" #include "mifaretag.h"
#include "nfc-utils.h" #include "nfc-utils.h"
static nfc_device_t* pnd; static nfc_device_t *pnd;
static nfc_target_info_t nti; static nfc_target_info_t nti;
static mifare_param mp; static mifare_param mp;
static mifare_tag mtKeys; static mifare_tag mtKeys;
@ -49,37 +49,48 @@ static bool bUseKeyA;
static bool bUseKeyFile; static bool bUseKeyFile;
static uint8_t uiBlocks; static uint8_t uiBlocks;
static byte_t keys[] = { static byte_t keys[] = {
0xff,0xff,0xff,0xff,0xff,0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xd3,0xf7,0xd3,0xf7,0xd3,0xf7, 0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7,
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5,
0xb0,0xb1,0xb2,0xb3,0xb4,0xb5, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5,
0x4d,0x3a,0x99,0xc3,0x51,0xdd, 0x4d, 0x3a, 0x99, 0xc3, 0x51, 0xdd,
0x1a,0x98,0x2c,0x7e,0x45,0x9a, 0x1a, 0x98, 0x2c, 0x7e, 0x45, 0x9a,
0xaa,0xbb,0xcc,0xdd,0xee,0xff, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
0x00,0x00,0x00,0x00,0x00,0x00 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}; };
static size_t num_keys = sizeof(keys) / 6;
static void print_success_or_failure(bool bFailure, uint32_t* uiBlockCounter) static size_t num_keys = sizeof (keys) / 6;
static void
print_success_or_failure (bool bFailure, uint32_t * uiBlockCounter)
{ {
printf("%c",(bFailure)?'x':'.'); printf ("%c", (bFailure) ? 'x' : '.');
if (uiBlockCounter) if (uiBlockCounter)
*uiBlockCounter += (bFailure)?0:4; *uiBlockCounter += (bFailure) ? 0 : 4;
} }
static bool is_first_block(uint32_t uiBlock) static bool
is_first_block (uint32_t uiBlock)
{ {
// Test if we are in the small or big sectors // Test if we are in the small or big sectors
if (uiBlock < 128) return ((uiBlock)%4 == 0); else return ((uiBlock)%16 == 0); if (uiBlock < 128)
return ((uiBlock) % 4 == 0);
else
return ((uiBlock) % 16 == 0);
} }
static bool is_trailer_block(uint32_t uiBlock) static bool
is_trailer_block (uint32_t uiBlock)
{ {
// Test if we are in the small or big sectors // Test if we are in the small or big sectors
if (uiBlock < 128) return ((uiBlock+1)%4 == 0); else return ((uiBlock+1)%16 == 0); if (uiBlock < 128)
return ((uiBlock + 1) % 4 == 0);
else
return ((uiBlock + 1) % 16 == 0);
} }
static uint32_t get_trailer_block(uint32_t uiFirstBlock) static uint32_t
get_trailer_block (uint32_t uiFirstBlock)
{ {
// Test if we are in the small or big sectors // Test if we are in the small or big sectors
uint32_t trailer_block = 0; uint32_t trailer_block = 0;
@ -91,452 +102,416 @@ static uint32_t get_trailer_block(uint32_t uiFirstBlock)
return trailer_block; return trailer_block;
} }
static bool authenticate(uint32_t uiBlock) static bool
authenticate (uint32_t uiBlock)
{ {
mifare_cmd mc; mifare_cmd mc;
uint32_t uiTrailerBlock; uint32_t uiTrailerBlock;
size_t key_index; size_t key_index;
// Key file authentication. // Key file authentication.
if (bUseKeyFile) if (bUseKeyFile) {
{
// Set the authentication information (uid) // Set the authentication information (uid)
memcpy(mp.mpa.abtUid,nti.nai.abtUid,4); memcpy (mp.mpa.abtUid, nti.nai.abtUid, 4);
// Locate the trailer (with the keys) used for this sector // Locate the trailer (with the keys) used for this sector
uiTrailerBlock = get_trailer_block(uiBlock); uiTrailerBlock = get_trailer_block (uiBlock);
// Determin if we should use the a or the b key // Determin if we should use the a or the b key
if (bUseKeyA) if (bUseKeyA) {
{
mc = MC_AUTH_A; mc = MC_AUTH_A;
memcpy(mp.mpa.abtKey,mtKeys.amb[uiTrailerBlock].mbt.abtKeyA,6); memcpy (mp.mpa.abtKey, mtKeys.amb[uiTrailerBlock].mbt.abtKeyA, 6);
} else { } else {
mc = MC_AUTH_B; mc = MC_AUTH_B;
memcpy(mp.mpa.abtKey,mtKeys.amb[uiTrailerBlock].mbt.abtKeyB,6); memcpy (mp.mpa.abtKey, mtKeys.amb[uiTrailerBlock].mbt.abtKeyB, 6);
} }
// Try to authenticate for the current sector // Try to authenticate for the current sector
if (nfc_initiator_mifare_cmd(pnd,mc,uiBlock,&mp)) if (nfc_initiator_mifare_cmd (pnd, mc, uiBlock, &mp))
return true; return true;
} }
// Auto authentication. // Auto authentication.
else else {
{
// Determin if we should use the a or the b key // Determin if we should use the a or the b key
mc = (bUseKeyA) ? MC_AUTH_A : MC_AUTH_B; mc = (bUseKeyA) ? MC_AUTH_A : MC_AUTH_B;
// Set the authentication information (uid) // Set the authentication information (uid)
memcpy(mp.mpa.abtUid,nti.nai.abtUid,4); memcpy (mp.mpa.abtUid, nti.nai.abtUid, 4);
for (key_index = 0; key_index < num_keys; key_index++) for (key_index = 0; key_index < num_keys; key_index++) {
{ memcpy (mp.mpa.abtKey, keys + (key_index * 6), 6);
memcpy(mp.mpa.abtKey, keys + (key_index*6), 6); if (nfc_initiator_mifare_cmd (pnd, mc, uiBlock, &mp)) {
if (nfc_initiator_mifare_cmd(pnd, mc, uiBlock, &mp))
{
/** /**
* @note: what about the other key? * @note: what about the other key?
*/ */
if (bUseKeyA) if (bUseKeyA)
memcpy(mtKeys.amb[uiBlock].mbt.abtKeyA,&mp.mpa.abtKey,6); memcpy (mtKeys.amb[uiBlock].mbt.abtKeyA, &mp.mpa.abtKey, 6);
else else
memcpy(mtKeys.amb[uiBlock].mbt.abtKeyB,&mp.mpa.abtKey,6); memcpy (mtKeys.amb[uiBlock].mbt.abtKeyB, &mp.mpa.abtKey, 6);
return true; return true;
} }
nfc_initiator_select_tag(pnd, NM_ISO14443A_106, mp.mpa.abtUid, 4, NULL); nfc_initiator_select_tag (pnd, NM_ISO14443A_106, mp.mpa.abtUid, 4, NULL);
} }
} }
return false; return false;
} }
static bool read_card(void) static bool
read_card (void)
{ {
int32_t iBlock; int32_t iBlock;
bool bFailure = false; bool bFailure = false;
uint32_t uiReadBlocks = 0; uint32_t uiReadBlocks = 0;
printf("Reading out %d blocks |",uiBlocks+1); printf ("Reading out %d blocks |", uiBlocks + 1);
// Read the card from end to begin // Read the card from end to begin
for (iBlock=uiBlocks; iBlock>=0; iBlock--) for (iBlock = uiBlocks; iBlock >= 0; iBlock--) {
{
// Authenticate everytime we reach a trailer block // Authenticate everytime we reach a trailer block
if (is_trailer_block(iBlock)) if (is_trailer_block (iBlock)) {
{
// Skip this the first time, bFailure it means nothing (yet) // Skip this the first time, bFailure it means nothing (yet)
if (iBlock != uiBlocks) if (iBlock != uiBlocks)
print_success_or_failure(bFailure, &uiReadBlocks); print_success_or_failure (bFailure, &uiReadBlocks);
// Show if the readout went well // Show if the readout went well
if (bFailure) if (bFailure) {
{
// When a failure occured we need to redo the anti-collision // When a failure occured we need to redo the anti-collision
if (!nfc_initiator_select_tag(pnd,NM_ISO14443A_106,NULL,0,&nti)) if (!nfc_initiator_select_tag (pnd, NM_ISO14443A_106, NULL, 0, &nti)) {
{ printf ("!\nError: tag was removed\n");
printf("!\nError: tag was removed\n");
return false; return false;
} }
bFailure = false; bFailure = false;
} }
fflush(stdout); fflush (stdout);
// Try to authenticate for the current sector // Try to authenticate for the current sector
if (!authenticate(iBlock)) if (!authenticate (iBlock)) {
{ printf ("!\nError: authentication failed for block %02x\n", iBlock);
printf("!\nError: authentication failed for block %02x\n",iBlock);
return false; return false;
} }
// Try to read out the trailer // Try to read out the trailer
if (nfc_initiator_mifare_cmd(pnd,MC_READ,iBlock,&mp)) if (nfc_initiator_mifare_cmd (pnd, MC_READ, iBlock, &mp)) {
{
// Copy the keys over from our key dump and store the retrieved access bits // Copy the keys over from our key dump and store the retrieved access bits
memcpy(mtDump.amb[iBlock].mbt.abtKeyA,mtKeys.amb[iBlock].mbt.abtKeyA,6); memcpy (mtDump.amb[iBlock].mbt.abtKeyA, mtKeys.amb[iBlock].mbt.abtKeyA, 6);
memcpy(mtDump.amb[iBlock].mbt.abtAccessBits,mp.mpd.abtData+6,4); memcpy (mtDump.amb[iBlock].mbt.abtAccessBits, mp.mpd.abtData + 6, 4);
memcpy(mtDump.amb[iBlock].mbt.abtKeyB,mtKeys.amb[iBlock].mbt.abtKeyB,6); memcpy (mtDump.amb[iBlock].mbt.abtKeyB, mtKeys.amb[iBlock].mbt.abtKeyB, 6);
} }
} else { } else {
// Make sure a earlier readout did not fail // Make sure a earlier readout did not fail
if (!bFailure) if (!bFailure) {
{
// Try to read out the data block // Try to read out the data block
if (nfc_initiator_mifare_cmd(pnd,MC_READ,iBlock,&mp)) if (nfc_initiator_mifare_cmd (pnd, MC_READ, iBlock, &mp)) {
{ memcpy (mtDump.amb[iBlock].mbd.abtData, mp.mpd.abtData, 16);
memcpy(mtDump.amb[iBlock].mbd.abtData,mp.mpd.abtData,16);
} else { } else {
bFailure = true; bFailure = true;
} }
} }
} }
} }
print_success_or_failure(bFailure, &uiReadBlocks); print_success_or_failure (bFailure, &uiReadBlocks);
printf("|\n"); printf ("|\n");
printf("Done, %d of %d blocks read.\n", uiReadBlocks, uiBlocks+1); printf ("Done, %d of %d blocks read.\n", uiReadBlocks, uiBlocks + 1);
fflush(stdout); fflush (stdout);
return true; return true;
} }
static bool write_card(void) static bool
write_card (void)
{ {
uint32_t uiBlock; uint32_t uiBlock;
bool bFailure = false; bool bFailure = false;
uint32_t uiWriteBlocks = 0; uint32_t uiWriteBlocks = 0;
printf("Writing %d blocks |",uiBlocks+1); printf ("Writing %d blocks |", uiBlocks + 1);
// Write the card from begin to end; // Write the card from begin to end;
for (uiBlock=0; uiBlock<=uiBlocks; uiBlock++) for (uiBlock = 0; uiBlock <= uiBlocks; uiBlock++) {
{
// Authenticate everytime we reach the first sector of a new block // Authenticate everytime we reach the first sector of a new block
if (is_first_block(uiBlock)) if (is_first_block (uiBlock)) {
{
// Skip this the first time, bFailure it means nothing (yet) // Skip this the first time, bFailure it means nothing (yet)
if (uiBlock != 0) if (uiBlock != 0)
print_success_or_failure(bFailure, &uiWriteBlocks); print_success_or_failure (bFailure, &uiWriteBlocks);
// Show if the readout went well // Show if the readout went well
if (bFailure) if (bFailure) {
{
// When a failure occured we need to redo the anti-collision // When a failure occured we need to redo the anti-collision
if (!nfc_initiator_select_tag(pnd,NM_ISO14443A_106,NULL,0,&nti)) if (!nfc_initiator_select_tag (pnd, NM_ISO14443A_106, NULL, 0, &nti)) {
{ printf ("!\nError: tag was removed\n");
printf("!\nError: tag was removed\n");
return false; return false;
} }
bFailure = false; bFailure = false;
} }
fflush(stdout); fflush (stdout);
// Try to authenticate for the current sector // Try to authenticate for the current sector
if (!authenticate(uiBlock)) if (!authenticate (uiBlock)) {
{ printf ("!\nError: authentication failed for block %02x\n", uiBlock);
printf("!\nError: authentication failed for block %02x\n",uiBlock);
return false; return false;
} }
} }
if (is_trailer_block(uiBlock)) if (is_trailer_block (uiBlock)) {
{
// Copy the keys over from our key dump and store the retrieved access bits // Copy the keys over from our key dump and store the retrieved access bits
memcpy(mp.mpd.abtData,mtDump.amb[uiBlock].mbt.abtKeyA,6); memcpy (mp.mpd.abtData, mtDump.amb[uiBlock].mbt.abtKeyA, 6);
memcpy(mp.mpd.abtData+6,mtDump.amb[uiBlock].mbt.abtAccessBits,4); memcpy (mp.mpd.abtData + 6, mtDump.amb[uiBlock].mbt.abtAccessBits, 4);
memcpy(mp.mpd.abtData+10,mtDump.amb[uiBlock].mbt.abtKeyB,6); memcpy (mp.mpd.abtData + 10, mtDump.amb[uiBlock].mbt.abtKeyB, 6);
// Try to write the trailer // Try to write the trailer
if (nfc_initiator_mifare_cmd(pnd,MC_WRITE,uiBlock,&mp) == false) { if (nfc_initiator_mifare_cmd (pnd, MC_WRITE, uiBlock, &mp) == false) {
printf("failed to write trailer block %d \n", uiBlock); printf ("failed to write trailer block %d \n", uiBlock);
bFailure = true; bFailure = true;
} }
} else { } else {
// The first block 0x00 is read only, skip this // The first block 0x00 is read only, skip this
if (uiBlock == 0) continue; if (uiBlock == 0)
continue;
// Make sure a earlier write did not fail // Make sure a earlier write did not fail
if (!bFailure) if (!bFailure) {
{
// Try to write the data block // Try to write the data block
memcpy(mp.mpd.abtData,mtDump.amb[uiBlock].mbd.abtData,16); memcpy (mp.mpd.abtData, mtDump.amb[uiBlock].mbd.abtData, 16);
if (!nfc_initiator_mifare_cmd(pnd,MC_WRITE,uiBlock,&mp)) bFailure = true; if (!nfc_initiator_mifare_cmd (pnd, MC_WRITE, uiBlock, &mp))
bFailure = true;
} }
} }
} }
print_success_or_failure(bFailure, &uiWriteBlocks); print_success_or_failure (bFailure, &uiWriteBlocks);
printf("|\n"); printf ("|\n");
printf("Done, %d of %d blocks written.\n", uiWriteBlocks, uiBlocks+1); printf ("Done, %d of %d blocks written.\n", uiWriteBlocks, uiBlocks + 1);
fflush(stdout); fflush (stdout);
return true; return true;
} }
static void mifare_classic_extract_payload(const char* abDump, char* pbPayload) static void
mifare_classic_extract_payload (const char *abDump, char *pbPayload)
{ {
uint8_t uiSectorIndex; uint8_t uiSectorIndex;
uint8_t uiBlockIndex; uint8_t uiBlockIndex;
size_t szDumpOffset; size_t szDumpOffset;
size_t szPayloadIndex = 0; size_t szPayloadIndex = 0;
for(uiSectorIndex=1; uiSectorIndex<16; uiSectorIndex++) { for (uiSectorIndex = 1; uiSectorIndex < 16; uiSectorIndex++) {
for(uiBlockIndex=0; uiBlockIndex<3; uiBlockIndex++) { for (uiBlockIndex = 0; uiBlockIndex < 3; uiBlockIndex++) {
szDumpOffset = uiSectorIndex*16*4 + uiBlockIndex*16; szDumpOffset = uiSectorIndex * 16 * 4 + uiBlockIndex * 16;
// for(uint8_t uiByteIndex=0; uiByteIndex<16; uiByteIndex++) printf("%02x ", abDump[szPayloadIndex+uiByteIndex]); // for(uint8_t uiByteIndex=0; uiByteIndex<16; uiByteIndex++) printf("%02x ", abDump[szPayloadIndex+uiByteIndex]);
memcpy(pbPayload+szPayloadIndex, abDump+szDumpOffset, 16); memcpy (pbPayload + szPayloadIndex, abDump + szDumpOffset, 16);
szPayloadIndex += 16; szPayloadIndex += 16;
} }
} }
} }
typedef enum { typedef enum
{
ACTION_READ, ACTION_READ,
ACTION_WRITE, ACTION_WRITE,
ACTION_EXTRACT, ACTION_EXTRACT,
ACTION_USAGE ACTION_USAGE
} action_t; } action_t;
static void print_usage(const char* pcProgramName) static void
print_usage (const char *pcProgramName)
{ {
printf("Usage: "); printf ("Usage: ");
printf("%s r|w a|b <dump.mfd> [<keys.mfd>]\n", pcProgramName); printf ("%s r|w a|b <dump.mfd> [<keys.mfd>]\n", pcProgramName);
printf(" r|w - Perform read from (r) or write to (w) card\n"); printf (" r|w - Perform read from (r) or write to (w) card\n");
printf(" a|b - Use A or B keys for action\n"); printf (" a|b - Use A or B keys for action\n");
printf(" <dump.mfd> - MiFare Dump (MFD) used to write (card to MFD) or (MFD to card)\n"); printf (" <dump.mfd> - MiFare Dump (MFD) used to write (card to MFD) or (MFD to card)\n");
printf(" <keys.mfd> - MiFare Dump (MFD) that contain the keys (optional)\n"); printf (" <keys.mfd> - MiFare Dump (MFD) that contain the keys (optional)\n");
printf("Or: "); printf ("Or: ");
printf("%s x <dump.mfd> <payload.bin>\n", pcProgramName); printf ("%s x <dump.mfd> <payload.bin>\n", pcProgramName);
printf(" x - Extract payload (data blocks) from MFD\n"); printf (" x - Extract payload (data blocks) from MFD\n");
printf(" <dump.mfd> - MiFare Dump (MFD) that contains wanted payload\n"); printf (" <dump.mfd> - MiFare Dump (MFD) that contains wanted payload\n");
printf(" <payload.bin> - Binary file where payload will be extracted\n"); printf (" <payload.bin> - Binary file where payload will be extracted\n");
} }
int main(int argc, const char* argv[]) int
main (int argc, const char *argv[])
{ {
bool b4K; bool b4K;
action_t atAction = ACTION_USAGE; action_t atAction = ACTION_USAGE;
byte_t* pbtUID; byte_t *pbtUID;
FILE* pfKeys = NULL; FILE *pfKeys = NULL;
FILE* pfDump = NULL; FILE *pfDump = NULL;
const char* command = argv[1]; const char *command = argv[1];
if(argc < 2) if (argc < 2) {
{ print_usage (argv[0]);
print_usage(argv[0]); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
if(strcmp(command, "r") == 0) if (strcmp (command, "r") == 0) {
{
atAction = ACTION_READ; atAction = ACTION_READ;
bUseKeyA = tolower((int)((unsigned char)*(argv[2]))) == 'a'; bUseKeyA = tolower ((int) ((unsigned char) *(argv[2]))) == 'a';
bUseKeyFile = (argc > 4); bUseKeyFile = (argc > 4);
} else if(strcmp(command, "w") == 0) } else if (strcmp (command, "w") == 0) {
{
atAction = ACTION_WRITE; atAction = ACTION_WRITE;
bUseKeyA = tolower((int)((unsigned char)*(argv[2]))) == 'a'; bUseKeyA = tolower ((int) ((unsigned char) *(argv[2]))) == 'a';
bUseKeyFile = (argc > 4); bUseKeyFile = (argc > 4);
} else if(strcmp(command, "x") == 0) } else if (strcmp (command, "x") == 0) {
{
atAction = ACTION_EXTRACT; atAction = ACTION_EXTRACT;
} }
switch(atAction) { switch (atAction) {
case ACTION_USAGE: case ACTION_USAGE:
print_usage(argv[0]); print_usage (argv[0]);
exit(EXIT_FAILURE); exit (EXIT_FAILURE);
break; break;
case ACTION_READ: case ACTION_READ:
case ACTION_WRITE: case ACTION_WRITE:
if (argc < 4) if (argc < 4) {
{ print_usage (argv[0]);
print_usage(argv[0]); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
if (bUseKeyFile) if (bUseKeyFile) {
{ pfKeys = fopen (argv[4], "rb");
pfKeys = fopen(argv[4],"rb"); if (pfKeys == NULL) {
if (pfKeys == NULL) printf ("Could not open keys file: %s\n", argv[4]);
{ exit (EXIT_FAILURE);
printf("Could not open keys file: %s\n",argv[4]);
exit(EXIT_FAILURE);
} }
if (fread(&mtKeys,1,sizeof(mtKeys),pfKeys) != sizeof(mtKeys)) if (fread (&mtKeys, 1, sizeof (mtKeys), pfKeys) != sizeof (mtKeys)) {
{ printf ("Could not read keys file: %s\n", argv[4]);
printf("Could not read keys file: %s\n",argv[4]); fclose (pfKeys);
fclose(pfKeys); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
fclose(pfKeys); fclose (pfKeys);
} }
if(atAction == ACTION_READ) { if (atAction == ACTION_READ) {
memset(&mtDump,0x00,sizeof(mtDump)); memset (&mtDump, 0x00, sizeof (mtDump));
} else { } else {
pfDump = fopen(argv[3],"rb"); pfDump = fopen (argv[3], "rb");
if (pfDump == NULL) if (pfDump == NULL) {
{ printf ("Could not open dump file: %s\n", argv[3]);
printf("Could not open dump file: %s\n",argv[3]); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
if (fread(&mtDump,1,sizeof(mtDump),pfDump) != sizeof(mtDump)) if (fread (&mtDump, 1, sizeof (mtDump), pfDump) != sizeof (mtDump)) {
{ printf ("Could not read dump file: %s\n", argv[3]);
printf("Could not read dump file: %s\n",argv[3]); fclose (pfDump);
fclose(pfDump); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
fclose(pfDump); fclose (pfDump);
} }
// printf("Successfully opened required files\n"); // printf("Successfully opened required files\n");
// Try to open the NFC reader // Try to open the NFC reader
pnd = nfc_connect(NULL); pnd = nfc_connect (NULL);
if (pnd == NULL) if (pnd == NULL) {
{ printf ("Error connecting NFC reader\n");
printf("Error connecting NFC reader\n"); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
nfc_initiator_init(pnd); nfc_initiator_init (pnd);
// Drop the field for a while // Drop the field for a while
nfc_configure(pnd,NDO_ACTIVATE_FIELD,false); nfc_configure (pnd, NDO_ACTIVATE_FIELD, false);
// Let the reader only try once to find a tag // Let the reader only try once to find a tag
nfc_configure(pnd,NDO_INFINITE_SELECT,false); nfc_configure (pnd, NDO_INFINITE_SELECT, false);
nfc_configure(pnd,NDO_HANDLE_CRC,true); nfc_configure (pnd, NDO_HANDLE_CRC, true);
nfc_configure(pnd,NDO_HANDLE_PARITY,true); nfc_configure (pnd, NDO_HANDLE_PARITY, true);
// Enable field so more power consuming cards can power themselves up // Enable field so more power consuming cards can power themselves up
nfc_configure(pnd,NDO_ACTIVATE_FIELD,true); nfc_configure (pnd, NDO_ACTIVATE_FIELD, true);
printf("Connected to NFC reader: %s\n",pnd->acName); printf ("Connected to NFC reader: %s\n", pnd->acName);
// Try to find a MIFARE Classic tag // Try to find a MIFARE Classic tag
if (!nfc_initiator_select_tag(pnd,NM_ISO14443A_106,NULL,0,&nti)) if (!nfc_initiator_select_tag (pnd, NM_ISO14443A_106, NULL, 0, &nti)) {
{ printf ("Error: no tag was found\n");
printf("Error: no tag was found\n"); nfc_disconnect (pnd);
nfc_disconnect(pnd); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
// Test if we are dealing with a MIFARE compatible tag // Test if we are dealing with a MIFARE compatible tag
if ((nti.nai.btSak & 0x08) == 0) if ((nti.nai.btSak & 0x08) == 0) {
{ printf ("Error: tag is not a MIFARE Classic card\n");
printf("Error: tag is not a MIFARE Classic card\n"); nfc_disconnect (pnd);
nfc_disconnect(pnd); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
if (bUseKeyFile) if (bUseKeyFile) {
{
// Get the info from the key dump // Get the info from the key dump
b4K = (mtKeys.amb[0].mbm.abtATQA[1] == 0x02); b4K = (mtKeys.amb[0].mbm.abtATQA[1] == 0x02);
pbtUID = mtKeys.amb[0].mbm.abtUID; pbtUID = mtKeys.amb[0].mbm.abtUID;
// Compare if key dump UID is the same as the current tag UID // Compare if key dump UID is the same as the current tag UID
if (memcmp(nti.nai.abtUid,pbtUID,4) != 0) if (memcmp (nti.nai.abtUid, pbtUID, 4) != 0) {
{ printf ("Expected MIFARE Classic %cK card with UID: %02x%02x%02x%02x\n", b4K ? '4' : '1', pbtUID[3], pbtUID[2],
printf("Expected MIFARE Classic %cK card with UID: %02x%02x%02x%02x\n",b4K?'4':'1', pbtUID[3], pbtUID[2], pbtUID[1], pbtUID[0]); pbtUID[1], pbtUID[0]);
} }
} }
// Get the info from the current tag // Get the info from the current tag
pbtUID = nti.nai.abtUid; pbtUID = nti.nai.abtUid;
b4K = (nti.nai.abtAtqa[1] == 0x02); b4K = (nti.nai.abtAtqa[1] == 0x02);
printf("Found MIFARE Classic %cK card with UID: %02x%02x%02x%02x\n",b4K?'4':'1', pbtUID[3], pbtUID[2], pbtUID[1], pbtUID[0]); printf ("Found MIFARE Classic %cK card with UID: %02x%02x%02x%02x\n", b4K ? '4' : '1', pbtUID[3], pbtUID[2],
pbtUID[1], pbtUID[0]);
uiBlocks = (b4K)?0xff:0x3f; uiBlocks = (b4K) ? 0xff : 0x3f;
if (atAction == ACTION_READ) if (atAction == ACTION_READ) {
{ if (read_card ()) {
if (read_card()) printf ("Writing data to file: %s ... ", argv[3]);
{ fflush (stdout);
printf("Writing data to file: %s ... ",argv[3]); pfDump = fopen (argv[3], "wb");
fflush(stdout); if (fwrite (&mtDump, 1, sizeof (mtDump), pfDump) != sizeof (mtDump)) {
pfDump = fopen(argv[3],"wb"); printf ("\nCould not write to file: %s\n", argv[3]);
if (fwrite(&mtDump,1,sizeof(mtDump),pfDump) != sizeof(mtDump)) exit (EXIT_FAILURE);
{
printf("\nCould not write to file: %s\n",argv[3]);
exit(EXIT_FAILURE);
} }
printf("Done.\n"); printf ("Done.\n");
fclose(pfDump); fclose (pfDump);
} }
} else { } else {
write_card(); write_card ();
} }
nfc_disconnect(pnd); nfc_disconnect (pnd);
break; break;
case ACTION_EXTRACT: { case ACTION_EXTRACT:{
const char* pcDump = argv[2]; const char *pcDump = argv[2];
const char* pcPayload = argv[3]; const char *pcPayload = argv[3];
FILE* pfDump = NULL; FILE *pfDump = NULL;
FILE* pfPayload = NULL; FILE *pfPayload = NULL;
char abDump[4096]; char abDump[4096];
char abPayload[4096]; char abPayload[4096];
pfDump = fopen(pcDump,"rb"); pfDump = fopen (pcDump, "rb");
if (pfDump == NULL) if (pfDump == NULL) {
{ printf ("Could not open dump file: %s\n", pcDump);
printf("Could not open dump file: %s\n",pcDump); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
if (fread(abDump,1,sizeof(abDump),pfDump) != sizeof(abDump)) if (fread (abDump, 1, sizeof (abDump), pfDump) != sizeof (abDump)) {
{ printf ("Could not read dump file: %s\n", pcDump);
printf("Could not read dump file: %s\n",pcDump); fclose (pfDump);
fclose(pfDump); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
fclose(pfDump); fclose (pfDump);
mifare_classic_extract_payload(abDump, abPayload); mifare_classic_extract_payload (abDump, abPayload);
printf("Writing data to file: %s\n",pcPayload); printf ("Writing data to file: %s\n", pcPayload);
pfPayload = fopen(pcPayload,"wb"); pfPayload = fopen (pcPayload, "wb");
if (fwrite(abPayload,1,sizeof(abPayload),pfPayload) != sizeof(abPayload)) if (fwrite (abPayload, 1, sizeof (abPayload), pfPayload) != sizeof (abPayload)) {
{ printf ("Could not write to file: %s\n", pcPayload);
printf("Could not write to file: %s\n",pcPayload); exit (EXIT_FAILURE);
exit(EXIT_FAILURE);
} }
fclose(pfPayload); fclose (pfPayload);
printf("Done, all bytes have been extracted!\n"); printf ("Done, all bytes have been extracted!\n");
} }
}; };
exit(EXIT_SUCCESS); exit (EXIT_SUCCESS);
} }