/*- * Public platform independent Near Field Communication (NFC) library * * Copyright (C) 2009, Roel Verdult, Romuald Conty * Copyright (C) 2010, Roel Verdult, Romuald Conty, Romain Tartière * Copyright (C) 2011, Romuald Conty, Romain Tartière * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see */ /** * @file nfc.c * @brief NFC library implementation */ /* vim:set ts=2 sw=2 et: */ #ifdef HAVE_CONFIG_H # include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include "nfc-internal.h" #include "drivers.h" #include #define LOG_CATEGORY "libnfc.general" const struct nfc_driver_t *nfc_drivers[] = { # if defined (DRIVER_PN53X_USB_ENABLED) &pn53x_usb_driver, # endif /* DRIVER_PN53X_USB_ENABLED */ # if defined (DRIVER_ACR122_ENABLED) &acr122_driver, # endif /* DRIVER_ACR122_ENABLED */ # if defined (DRIVER_PN532_UART_ENABLED) &pn532_uart_driver, # endif /* DRIVER_PN532_UART_ENABLED */ # if defined (DRIVER_ARYGON_ENABLED) &arygon_driver, # endif /* DRIVER_ARYGON_ENABLED */ NULL }; /** * @brief Get the defaut NFC device * @param connstring \a nfc_connstring pointer where the default connection string will be stored * @return \e true on success * * This function fill \e connstring with the LIBNFC_DEFAULT_DEVICE environment variable content * if is set otherwise it will search for the first available device, and fill * \e connstring with the corresponding \a nfc_connstring value. * * This function returns true when LIBNFC_DEFAULT_DEVICE is set or an available device is found. * * @note The \e connstring content can be invalid if LIBNFC_DEFAULT_DEVICE is * set with incorrect value. */ bool nfc_get_default_device (nfc_connstring *connstring) { char *env_default_connstring = getenv ("LIBNFC_DEFAULT_DEVICE"); if (NULL == env_default_connstring) { // LIBNFC_DEFAULT_DEVICE is not set, we fallback on probing for the first available device size_t szDeviceFound; nfc_connstring listed_cs[1]; nfc_list_devices (listed_cs, 1, &szDeviceFound); if (szDeviceFound) { strncpy (*connstring, listed_cs[0], sizeof(nfc_connstring)); } else { return false; } } else { strncpy (*connstring, env_default_connstring, sizeof(nfc_connstring)); } return true; } /** * @brief Connect to a NFC device * @param connstring The device connection string if specific device is wanted, \c NULL otherwise * @return Returns pointer to a \a nfc_device struct if successfull; otherwise returns \c NULL value. * * If \e connstring is \c NULL, the \a nfc_get_default_device() function is used. * * If \e connstring is set, this function will try to claim the right device using information provided by \e connstring. * * When it has successfully claimed a NFC device, memory is allocated to save the device information. * It will return a pointer to a \a nfc_device struct. * This pointer should be supplied by every next functions of libnfc that should perform an action with this device. * * @note Depending on the desired operation mode, the device needs to be configured by using nfc_initiator_init() or nfc_target_init(), * optionally followed by manual tuning of the parameters if the default parameters are not suiting your goals. */ nfc_device * nfc_connect (const nfc_connstring connstring) { log_init (); nfc_device *pnd = NULL; nfc_connstring ncs; if (connstring == NULL) { if (!nfc_get_default_device (&ncs)) { log_fini (); return NULL; } } else { strncpy (ncs, connstring, sizeof (nfc_connstring)); } // Search through the device list for an available device const struct nfc_driver_t *ndr; const struct nfc_driver_t **pndr = nfc_drivers; while ((ndr = *pndr)) { // Specific device is requested: using device description if (0 != strncmp (ndr->name, ncs, strlen(ndr->name))) { pndr++; continue; } pnd = ndr->connect (ncs); // Test if the connection was successful if (pnd == NULL) { log_put (LOG_CATEGORY, NFC_PRIORITY_TRACE, "Unable to connect to \"%s\".", ncs); log_fini (); return pnd; } log_put (LOG_CATEGORY, NFC_PRIORITY_TRACE, "[%s] has been claimed.", pnd->acName); log_fini (); return pnd; } // Too bad, no driver can decode connstring log_put (LOG_CATEGORY, NFC_PRIORITY_TRACE, "No driver available to handle \"%s\".", ncs); log_fini (); return NULL; } /** * @brief Disconnect from a NFC device * @param pnd \a nfc_device struct pointer that represent currently used device * * Initiator's selected tag is disconnected and the device, including allocated \a nfc_device struct, is released. */ void nfc_disconnect (nfc_device *pnd) { if (pnd) { // Go in idle mode nfc_idle (pnd); // Disconnect, clean up and release the device pnd->driver->disconnect (pnd); log_fini (); } } /** * @brief Probe for discoverable supported devices (ie. only available for some drivers) * @param[out] pnddDevices array of \a nfc_device_desc_t previously allocated by the caller. * @param szDevices size of the \a pnddDevices array. * @param[out] pszDeviceFound number of devices found. */ void nfc_list_devices (nfc_connstring connstrings[] , size_t szDevices, size_t *pszDeviceFound) { size_t szN; *pszDeviceFound = 0; const struct nfc_driver_t *ndr; const struct nfc_driver_t **pndr = nfc_drivers; log_init (); while ((ndr = *pndr)) { szN = 0; if (ndr->probe (connstrings + (*pszDeviceFound), szDevices - (*pszDeviceFound), &szN)) { *pszDeviceFound += szN; log_put (LOG_CATEGORY, NFC_PRIORITY_TRACE, "%ld device(s) found using %s driver", (unsigned long) szN, ndr->name); if (*pszDeviceFound == szDevices) break; } pndr++; } log_fini (); } /** * @brief Set a device's integer-property value * @return Returns 0 on success, otherwise returns libnfc's error code (negative value) * @param pnd \a nfc_device struct pointer that represent currently used device * @param property \a nfc_property which will be set * @param value integer value * * Sets integer property. * * @see nfc_property enum values */ int nfc_device_set_property_int (nfc_device *pnd, const nfc_property property, const int value) { HAL (device_set_property_int, pnd, property, value); } /** * @brief Set a device's boolean-property value * @return Returns 0 on success, otherwise returns libnfc's error code (negative value) * @param pnd \a nfc_device struct pointer that represent currently used device * @param property \a nfc_property which will be set * @param bEnable boolean to activate/disactivate the property * * Configures parameters and registers that control for example timing, * modulation, frame and error handling. There are different categories for * configuring the \e PN53X chip features (handle, activate, infinite and * accept). */ int nfc_device_set_property_bool (nfc_device *pnd, const nfc_property property, const bool bEnable) { HAL (device_set_property_bool, pnd, property, bEnable); } /** * @brief Initialize NFC device as initiator (reader) * @return Returns 0 on success, otherwise returns libnfc's error code (negative value) * @param pnd \a nfc_device struct pointer that represent currently used device * * The NFC device is configured to function as RFID reader. * After initialization it can be used to communicate to passive RFID tags and active NFC devices. * The reader will act as initiator to communicate peer 2 peer (NFCIP) to other active NFC devices. * - Crc is handled by the device (NP_HANDLE_CRC = true) * - Parity is handled the device (NP_HANDLE_PARITY = true) * - Cryto1 cipher is disabled (NP_ACTIVATE_CRYPTO1 = false) * - Easy framing is enabled (NP_EASY_FRAMING = true) * - Auto-switching in ISO14443-4 mode is enabled (NP_AUTO_ISO14443_4 = true) * - Invalid frames are not accepted (NP_ACCEPT_INVALID_FRAMES = false) * - Multiple frames are not accepted (NP_ACCEPT_MULTIPLE_FRAMES = false) * - 14443-A mode is activated (NP_FORCE_ISO14443_A = true) * - speed is set to 106 kbps (NP_FORCE_SPEED_106 = true) * - Let the device try forever to find a target (NP_INFINITE_SELECT = true) * - RF field is shortly dropped (if it was enabled) then activated again */ int nfc_initiator_init (nfc_device *pnd) { int res = 0; // Drop the field for a while if ((res = nfc_device_set_property_bool (pnd, NP_ACTIVATE_FIELD, false)) < 0) return res; // Enable field so more power consuming cards can power themselves up if ((res = nfc_device_set_property_bool (pnd, NP_ACTIVATE_FIELD, true)) < 0) return res; // Let the device try forever to find a target/tag if ((res = nfc_device_set_property_bool (pnd, NP_INFINITE_SELECT, true)) < 0) return res; // Activate auto ISO14443-4 switching by default if ((res = nfc_device_set_property_bool (pnd, NP_AUTO_ISO14443_4, true)) < 0) return res; // Force 14443-A mode if ((res = nfc_device_set_property_bool (pnd, NP_FORCE_ISO14443_A, true)) < 0) return res; // Force speed at 106kbps if ((res = nfc_device_set_property_bool (pnd, NP_FORCE_SPEED_106, true)) < 0) return res; // Disallow invalid frame if ((res = nfc_device_set_property_bool (pnd, NP_ACCEPT_INVALID_FRAMES, false)) < 0) return res; // Disallow multiple frames if ((res = nfc_device_set_property_bool (pnd, NP_ACCEPT_MULTIPLE_FRAMES, false)) < 0) return res; // Make sure we reset the CRC and parity to chip handling. if ((res = nfc_device_set_property_bool (pnd, NP_HANDLE_CRC, true)) < 0) return res; if ((res = nfc_device_set_property_bool (pnd, NP_HANDLE_PARITY, true)) < 0) return res; // Activate "easy framing" feature by default if ((res = nfc_device_set_property_bool (pnd, NP_EASY_FRAMING, true)) < 0) return res; // Deactivate the CRYPTO1 cipher, it may could cause problems when still active if ((res = nfc_device_set_property_bool (pnd, NP_ACTIVATE_CRYPTO1, false)) < 0) return res; HAL (initiator_init, pnd); } /** * @brief Select a passive or emulated tag * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * @param nm desired modulation * @param pbtInitData optional initiator data used for Felica, ISO14443B, Topaz polling or to select a specific UID in ISO14443A. * @param szInitData length of initiator data \a pbtInitData. * @note pbtInitData is used with different kind of data depending on modulation type: * - for an ISO/IEC 14443 type A modulation, pbbInitData contains the UID you want to select; * - for an ISO/IEC 14443 type B modulation, pbbInitData contains Application Family Identifier (AFI) (see ISO/IEC 14443-3); * - for a FeliCa modulation, pbbInitData contains polling payload (see ISO/IEC 18092 11.2.2.5). * * @param[out] pnt \a nfc_target struct pointer which will filled if available * * The NFC device will try to find one available passive tag or emulated tag. * * The chip needs to know with what kind of tag it is dealing with, therefore * the initial modulation and speed (106, 212 or 424 kbps) should be supplied. */ bool nfc_initiator_select_passive_target (nfc_device *pnd, const nfc_modulation nm, const uint8_t *pbtInitData, const size_t szInitData, nfc_target *pnt) { uint8_t abtInit[MAX(12, szInitData)]; size_t szInit; switch (nm.nmt) { case NMT_ISO14443A: iso14443_cascade_uid (pbtInitData, szInitData, abtInit, &szInit); break; default: memcpy (abtInit, pbtInitData, szInitData); szInit = szInitData; break; } HAL (initiator_select_passive_target, pnd, nm, abtInit, szInit, pnt); } /** * @brief List passive or emulated tags * @return Returns the number of targets found on success, otherwise returns libnfc's error code (negative value) * * @param pnd \a nfc_device struct pointer that represent currently used device * @param nm desired modulation * @param[out] ant array of \a nfc_target that will be filled with targets info * @param szTargets size of \a ant (will be the max targets listed) * * The NFC device will try to find the available passive tags. Some NFC devices * are capable to emulate passive tags. The standards (ISO18092 and ECMA-340) * describe the modulation that can be used for reader to passive * communications. The chip needs to know with what kind of tag it is dealing * with, therefore the initial modulation and speed (106, 212 or 424 kbps) * should be supplied. */ int nfc_initiator_list_passive_targets (nfc_device *pnd, const nfc_modulation nm, nfc_target ant[], const size_t szTargets) { nfc_target nt; size_t szTargetFound = 0; uint8_t *pbtInitData = NULL; size_t szInitDataLen = 0; int res = 0; pnd->last_error = 0; // Let the reader only try once to find a tag if ((res = nfc_device_set_property_bool (pnd, NP_INFINITE_SELECT, false)) < 0) { return res; } prepare_initiator_data (nm, &pbtInitData, &szInitDataLen); while (nfc_initiator_select_passive_target (pnd, nm, pbtInitData, szInitDataLen, &nt)) { nfc_initiator_deselect_target (pnd); if (szTargets == szTargetFound) { break; } size_t i; bool seen = false; // Check if we've already seen this tag for (i = 0; i < szTargetFound; i++) { if (memcmp(&(ant[i]), &nt, sizeof (nfc_target)) == 0) { seen = true; } } if (seen) { break; } memcpy (&(ant[szTargetFound]), &nt, sizeof (nfc_target)); szTargetFound++; // deselect has no effect on FeliCa and Jewel cards so we'll stop after one... // ISO/IEC 14443 B' cards are polled at 100% probability so it's not possible to detect correctly two cards at the same time if ((nm.nmt == NMT_FELICA) || (nm.nmt == NMT_JEWEL) || (nm.nmt == NMT_ISO14443BI) || (nm.nmt == NMT_ISO14443B2SR) || (nm.nmt == NMT_ISO14443B2CT)) { break; } } return szTargetFound; } /** * @brief Polling for NFC targets * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * @param ppttTargetTypes array of desired target types * @param szTargetTypes \e ppttTargetTypes count * @param uiPollNr specifies the number of polling (0x01 – 0xFE: 1 up to 254 polling, 0xFF: Endless polling) * @note one polling is a polling for each desired target type * @param uiPeriod indicates the polling period in units of 150 ms (0x01 – 0x0F: 150ms – 2.25s) * @note e.g. if uiPeriod=10, it will poll each desired target type during 1.5s * @param[out] pnt pointer on \a nfc_target (over)writable struct */ bool nfc_initiator_poll_target (nfc_device *pnd, const nfc_modulation *pnmModulations, const size_t szModulations, const uint8_t uiPollNr, const uint8_t uiPeriod, nfc_target *pnt) { HAL (initiator_poll_target, pnd, pnmModulations, szModulations, uiPollNr, uiPeriod, pnt); } /** * @brief Select a target and request active or passive mode for D.E.P. (Data Exchange Protocol) * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * @param ndm desired D.E.P. mode (\a NDM_ACTIVE or \a NDM_PASSIVE for active, respectively passive mode) * @param ndiInitiator pointer \a nfc_dep_info struct that contains \e NFCID3 and \e General \e Bytes to set to the initiator device (optionnal, can be \e NULL) * @param[out] pnt is a \a nfc_target struct pointer where target information will be put. * * The NFC device will try to find an available D.E.P. target. The standards * (ISO18092 and ECMA-340) describe the modulation that can be used for reader * to passive communications. * * @note \a nfc_dep_info will be returned when the target was acquired successfully. */ bool nfc_initiator_select_dep_target (nfc_device *pnd, const nfc_dep_mode ndm, const nfc_baud_rate nbr, const nfc_dep_info *pndiInitiator, nfc_target *pnt, const int timeout) { HAL (initiator_select_dep_target, pnd, ndm, nbr, pndiInitiator, pnt, timeout); } /** * @brief Deselect a selected passive or emulated tag * @return Returns \c true if action was successfully performed; otherwise returns \c false. * @param pnd \a nfc_device struct pointer that represents currently used device * * After selecting and communicating with a passive tag, this function could be * used to deactivate and release the tag. This is very useful when there are * multiple tags available in the field. It is possible to use the \fn * nfc_initiator_select_passive_target() function to select the first available * tag, test it for the available features and support, deselect it and skip to * the next tag until the correct tag is found. */ bool nfc_initiator_deselect_target (nfc_device *pnd) { HAL (initiator_deselect_target, pnd); } /** * @brief Send data to target then retrieve data from target * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pbtTx contains a byte array of the frame that needs to be transmitted. * @param szTx contains the length in bytes. * @param timeout in milliseconds * * The NFC device (configured as initiator) will transmit the supplied bytes (\a pbtTx) to the target. * It waits for the response and stores the received bytes in the \a pbtRx byte array. * * If timeout is not a null pointer, it specifies the maximum interval to wait for the function to be executed. * If timeout is a null pointer, the function blocks indefinitely (until an error is raised or function is completed). * * If \a NP_EASY_FRAMING option is disabled the frames will sent and received in raw mode: \e PN53x will not handle input neither output data. * * The parity bits are handled by the \e PN53x chip. The CRC can be generated automatically or handled manually. * Using this function, frames can be communicated very fast via the NFC initiator to the tag. * * Tests show that on average this way of communicating is much faster than using the regular driver/middle-ware (often supplied by manufacturers). * * @warning The configuration option \a NP_HANDLE_PARITY must be set to \c true (the default value). */ bool nfc_initiator_transceive_bytes (nfc_device *pnd, const uint8_t *pbtTx, const size_t szTx, uint8_t *pbtRx, size_t *pszRx, int timeout) { HAL (initiator_transceive_bytes, pnd, pbtTx, szTx, pbtRx, pszRx, timeout) } /** * @brief Transceive raw bit-frames to a target * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pbtTx contains a byte array of the frame that needs to be transmitted. * @param szTxBits contains the length in bits. * * @note For example the REQA (0x26) command (first anti-collision command of * ISO14443-A) must be precise 7 bits long. This is not possible by using * nfc_initiator_transceive_bytes(). With that function you can only * communicate frames that consist of full bytes. When you send a full byte (8 * bits + 1 parity) with the value of REQA (0x26), a tag will simply not * respond. More information about this can be found in the anti-collision * example (\e nfc-anticol). * * @param pbtTxPar parameter contains a byte array of the corresponding parity bits needed to send per byte. * * @note For example if you send the SELECT_ALL (0x93, 0x20) = [ 10010011, * 00100000 ] command, you have to supply the following parity bytes (0x01, * 0x00) to define the correct odd parity bits. This is only an example to * explain how it works, if you just are sending two bytes with ISO14443-A * compliant parity bits you better can use the * nfc_initiator_transceive_bytes() function. * * @param[out] pbtRx response from the tag * @param[out] pszRxBits \a pbtRx length in bits * @param[out] pbtRxPar parameter contains a byte array of the corresponding parity bits * * The NFC device (configured as \e initiator) will transmit low-level messages * where only the modulation is handled by the \e PN53x chip. Construction of * the frame (data, CRC and parity) is completely done by libnfc. This can be * very useful for testing purposes. Some protocols (e.g. MIFARE Classic) * require to violate the ISO14443-A standard by sending incorrect parity and * CRC bytes. Using this feature you are able to simulate these frames. */ bool nfc_initiator_transceive_bits (nfc_device *pnd, const uint8_t *pbtTx, const size_t szTxBits, const uint8_t *pbtTxPar, uint8_t *pbtRx, size_t *pszRxBits, uint8_t *pbtRxPar) { HAL (initiator_transceive_bits, pnd, pbtTx, szTxBits, pbtTxPar, pbtRx, pszRxBits, pbtRxPar); } /** * @brief Send data to target then retrieve data from target * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * This function is similar to nfc_initiator_transceive_bytes() with the following differences: * - A precise cycles counter will indicate the number of cycles between emission & reception of frames. * - It only supports mode with \a NP_EASY_FRAMING option disabled. * - Overall communication with the host is heavier and slower. * * Timer control: * By default timer configuration tries to maximize the precision, which also limits the maximum * cycles count before saturation/timeout. * E.g. with PN53x it can count up to 65535 cycles, so about 4.8ms, with a precision of about 73ns. * - If you're ok with the defaults, set *cycles = 0 before calling this function. * - If you need to count more cycles, set *cycles to the maximum you expect but don't forget * you'll loose in precision and it'll take more time before timeout, so don't abuse! * * @warning The configuration option \a NP_EASY_FRAMING must be set to \c false. * @warning The configuration option \a NP_HANDLE_PARITY must be set to \c true (the default value). */ bool nfc_initiator_transceive_bytes_timed (nfc_device *pnd, const uint8_t *pbtTx, const size_t szTx, uint8_t *pbtRx, size_t *pszRx, uint32_t *cycles) { HAL (initiator_transceive_bytes_timed, pnd, pbtTx, szTx, pbtRx, pszRx, cycles) } /** * @brief Transceive raw bit-frames to a target * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * This function is similar to nfc_initiator_transceive_bits() with the following differences: * - A precise cycles counter will indicate the number of cycles between emission & reception of frames. * - It only supports mode with \a NP_EASY_FRAMING option disabled and CRC must be handled manually. * - Overall communication with the host is heavier and slower. * * Timer control: * By default timer configuration tries to maximize the precision, which also limits the maximum * cycles count before saturation/timeout. * E.g. with PN53x it can count up to 65535 cycles, so about 4.8ms, with a precision of about 73ns. * - If you're ok with the defaults, set *cycles = 0 before calling this function. * - If you need to count more cycles, set *cycles to the maximum you expect but don't forget * you'll loose in precision and it'll take more time before timeout, so don't abuse! * * @warning The configuration option \a NP_EASY_FRAMING must be set to \c false. * @warning The configuration option \a NP_HANDLE_CRC must be set to \c false. * @warning The configuration option \a NP_HANDLE_PARITY must be set to \c true (the default value). */ bool nfc_initiator_transceive_bits_timed (nfc_device *pnd, const uint8_t *pbtTx, const size_t szTxBits, const uint8_t *pbtTxPar, uint8_t *pbtRx, size_t *pszRxBits, uint8_t *pbtRxPar, uint32_t *cycles) { HAL (initiator_transceive_bits_timed, pnd, pbtTx, szTxBits, pbtTxPar, pbtRx, pszRxBits, pbtRxPar, cycles); } /** * @brief Initialize NFC device as an emulated tag * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * @param ntm target mode restriction that you want to emulate (eg. NTM_PASSIVE_ONLY) * @param pnt pointer to \a nfc_target struct that represents the wanted emulated target * * @note \a pnt can be updated by this function: if you set NBR_UNDEFINED * and/or NDM_UNDEFINED (ie. for DEP mode), these fields will be updated. * * @param[out] pbtRx Rx buffer pointer * @param[out] pszRx received bytes count * * This function initializes NFC device in \e target mode in order to emulate a * tag using the specified \a nfc_target_mode_t. * - Crc is handled by the device (NP_HANDLE_CRC = true) * - Parity is handled the device (NP_HANDLE_PARITY = true) * - Cryto1 cipher is disabled (NP_ACTIVATE_CRYPTO1 = false) * - Auto-switching in ISO14443-4 mode is enabled (NP_AUTO_ISO14443_4 = true) * - Easy framing is disabled (NP_EASY_FRAMING = false) * - Invalid frames are not accepted (NP_ACCEPT_INVALID_FRAMES = false) * - Multiple frames are not accepted (NP_ACCEPT_MULTIPLE_FRAMES = false) * - RF field is dropped * * @warning Be aware that this function will wait (hang) until a command is * received that is not part of the anti-collision. The RATS command for * example would wake up the emulator. After this is received, the send and * receive functions can be used. */ bool nfc_target_init (nfc_device *pnd, nfc_target *pnt, uint8_t *pbtRx, size_t * pszRx) { // Disallow invalid frame if (nfc_device_set_property_bool (pnd, NP_ACCEPT_INVALID_FRAMES, false) < 0) return false; // Disallow multiple frames if (nfc_device_set_property_bool (pnd, NP_ACCEPT_MULTIPLE_FRAMES, false) < 0) return false; // Make sure we reset the CRC and parity to chip handling. if (nfc_device_set_property_bool (pnd, NP_HANDLE_CRC, true) < 0) return false; if (nfc_device_set_property_bool (pnd, NP_HANDLE_PARITY, true) < 0) return false; // Activate auto ISO14443-4 switching by default if (nfc_device_set_property_bool (pnd, NP_AUTO_ISO14443_4, true) < 0) return false; // Activate "easy framing" feature by default if (nfc_device_set_property_bool (pnd, NP_EASY_FRAMING, true) < 0) return false; // Deactivate the CRYPTO1 cipher, it may could cause problems when still active if (nfc_device_set_property_bool (pnd, NP_ACTIVATE_CRYPTO1, false) < 0) return false; // Drop explicitely the field if (nfc_device_set_property_bool (pnd, NP_ACTIVATE_FIELD, false) < 0) return false; HAL (target_init, pnd, pnt, pbtRx, pszRx); } /** * @brief Turn NFC device in idle mode * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * * This function switch the device in idle mode. * In initiator mode, the RF field is turned off and the device is set to low power mode (if avaible); * In target mode, the emulation is stoped (no target available from external initiator) and the device is set to low power mode (if avaible). */ bool nfc_idle (nfc_device *pnd) { HAL (idle, pnd); } /** * @brief Abort current running command * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * * Some commands (ie. nfc_target_init()) are blocking functions and will return only in particular conditions (ie. external initiator request). * This function attempt to abort the current running command. * * @note The blocking function (ie. nfc_target_init()) will failed with DEABORT error. */ bool nfc_abort_command (nfc_device *pnd) { HAL (abort_command, pnd); } /** * @brief Send bytes and APDU frames * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * @param pbtTx pointer to Tx buffer * @param szTx size of Tx buffer * @param timeout in milliseconds * * This function make the NFC device (configured as \e target) send byte frames * (e.g. APDU responses) to the \e initiator. * * If timeout is not a null pointer, it specifies the maximum interval to wait for the function to be executed. * If timeout is a null pointer, the function blocks indefinitely (until an error is raised or function is completed). */ bool nfc_target_send_bytes (nfc_device *pnd, const uint8_t *pbtTx, const size_t szTx, int timeout) { HAL (target_send_bytes, pnd, pbtTx, szTx, timeout); } /** * @brief Receive bytes and APDU frames * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * @param pnd \a nfc_device struct pointer that represent currently used device * @param[out] pbtRx pointer to Rx buffer * @param[out] pszRx received byte count * @param timeout in milliseconds * * This function retrieves bytes frames (e.g. ADPU) sent by the \e initiator to the NFC device (configured as \e target). * * If timeout is not a null pointer, it specifies the maximum interval to wait for the function to be executed. * If timeout is a null pointer, the function blocks indefinitely (until an error is raised or function is completed). */ bool nfc_target_receive_bytes (nfc_device *pnd, uint8_t *pbtRx, size_t *pszRx, int timeout) { HAL (target_receive_bytes, pnd, pbtRx, pszRx, timeout); } /** * @brief Send raw bit-frames * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * This function can be used to transmit (raw) bit-frames to the \e initiator * using the specified NFC device (configured as \e target). */ bool nfc_target_send_bits (nfc_device *pnd, const uint8_t *pbtTx, const size_t szTxBits, const uint8_t *pbtTxPar) { HAL (target_send_bits, pnd, pbtTx, szTxBits, pbtTxPar); } /** * @brief Receive bit-frames * @return Returns \c true if action was successfully performed; otherwise returns \c false. * * This function makes it possible to receive (raw) bit-frames. It returns all * the messages that are stored in the FIFO buffer of the \e PN53x chip. It * does not require to send any frame and thereby could be used to snoop frames * that are transmitted by a nearby \e initiator. @note Check out the * NP_ACCEPT_MULTIPLE_FRAMES configuration option to avoid losing transmitted * frames. */ bool nfc_target_receive_bits (nfc_device *pnd, uint8_t *pbtRx, size_t *pszRxBits, uint8_t *pbtRxPar) { HAL (target_receive_bits, pnd, pbtRx, pszRxBits, pbtRxPar); } /** * @brief Return the PCD error string * @return Returns a string */ const char * nfc_strerror (const nfc_device *pnd) { return pnd->driver->strerror (pnd); } /** * @brief Renders the PCD error in pcStrErrBuf for a maximum size of szBufLen chars * @return Returns 0 upon success */ int nfc_strerror_r (const nfc_device *pnd, char *pcStrErrBuf, size_t szBufLen) { return (snprintf (pcStrErrBuf, szBufLen, "%s", nfc_strerror (pnd)) < 0) ? -1 : 0; } /** * @brief Display the PCD error a-la perror */ void nfc_perror (const nfc_device *pnd, const char *pcString) { fprintf (stderr, "%s: %s\n", pcString, nfc_strerror (pnd)); } /* Special data accessors */ /** * @brief Returns the device name * @return Returns a string with the device name */ const char * nfc_device_get_name (nfc_device *pnd) { return pnd->acName; } /* Misc. functions */ /** * @brief Returns the library version * @return Returns a string with the library version */ const char * nfc_version (void) { #ifdef SVN_REVISION return PACKAGE_VERSION " (r" SVN_REVISION ")"; #else return PACKAGE_VERSION; #endif // SVN_REVISION }