/*- * Free/Libre Near Field Communication (NFC) library * * Libnfc historical contributors: * Copyright (C) 2009 Roel Verdult * Copyright (C) 2009-2013 Romuald Conty * Copyright (C) 2010-2012 Romain Tartière * Copyright (C) 2010-2017 Philippe Teuwen * Copyright (C) 2012-2013 Ludovic Rousseau * See AUTHORS file for a more comprehensive list of contributors. * Additional contributors of this file: * Copyright (C) 2013-2018 Adam Laurie * Copyright (C) 2018-2019 Daniele Bruneo * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2 )Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Note that this license only applies on the examples, NFC library itself is under LGPL * */ /** * @file nfc-mfultralight.c * @brief MIFARE Ultralight dump/restore tool */ #ifdef HAVE_CONFIG_H # include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include #include #include "nfc-utils.h" #include "mifare.h" #define MAX_TARGET_COUNT 16 #define MAX_UID_LEN 10 #define EV1_NONE 0 #define EV1_UL11 1 #define EV1_UL21 2 #define NTAG_NONE 0 #define NTAG_213 1 #define NTAG_215 2 #define NTAG_216 3 static nfc_device *pnd; static nfc_target nt; static mifare_param mp; static maxtag mtDump; // use the largest tag type for internal storage static uint32_t uiBlocks = 0x10; static uint32_t uiReadPages = 0; static uint8_t iPWD[4] = { 0x0 }; static uint8_t iPACK[2] = { 0x0 }; static uint8_t iEV1Type = EV1_NONE; static uint8_t iNTAGType = NTAG_NONE; // special unlock command uint8_t abtUnlock1[1] = { 0x40 }; uint8_t abtUnlock2[1] = { 0x43 }; // EV1 commands uint8_t abtEV1[3] = { 0x60, 0x00, 0x00 }; uint8_t abtPWAuth[7] = { 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Halt command uint8_t abtHalt[4] = { 0x50, 0x00, 0x00, 0x00 }; #define MAX_FRAME_LEN 264 static uint8_t abtRx[MAX_FRAME_LEN]; static int szRxBits; static int szRx; static const nfc_modulation nmMifare = { .nmt = NMT_ISO14443A, .nbr = NBR_106, }; static void print_success_or_failure(bool bFailure, uint32_t *uiOkCounter, uint32_t *uiFailedCounter) { printf("%c", (bFailure) ? 'f' : '.'); if (uiOkCounter) *uiOkCounter += (bFailure) ? 0 : 1; if (uiFailedCounter) *uiFailedCounter += (bFailure) ? 1 : 0; } static bool read_card(void) { uint32_t page; bool bFailure = false; uint32_t uiFailedPages = 0; printf("Reading %d pages |", uiBlocks); for (page = 0; page < uiBlocks; page += 4) { // Try to read out the data block if (nfc_initiator_mifare_cmd(pnd, MC_READ, page, &mp)) { memcpy(mtDump.ul[page / 4].mbd.abtData, mp.mpd.abtData, uiBlocks - page < 4 ? (uiBlocks - page) * 4 : 16); } else { bFailure = true; } for (uint8_t i = 0; i < (uiBlocks - page < 4 ? uiBlocks - page : 4); i++) { print_success_or_failure(bFailure, &uiReadPages, &uiFailedPages); } } printf("|\n"); printf("Done, %d of %d pages read (%d pages failed).\n", uiReadPages, uiBlocks, uiFailedPages); fflush(stdout); // copy EV1 secrets to dump data switch (iEV1Type) { case EV1_UL11: memcpy(mtDump.ul[4].mbc11.pwd, iPWD, 4); memcpy(mtDump.ul[4].mbc11.pack, iPACK, 2); break; case EV1_UL21: memcpy(mtDump.ul[9].mbc21a.pwd, iPWD, 4); memcpy(mtDump.ul[9].mbc21b.pack, iPACK, 2); break; case EV1_NONE: default: break; } // copy NTAG secrets to dump data switch (iNTAGType) { case NTAG_213: memcpy(mtDump.nt[43].mbc21356d.pwd, iPWD, 4); memcpy(mtDump.nt[44].mbc21356e.pack, iPACK, 2); break; case NTAG_215: memcpy(mtDump.nt[133].mbc21356d.pwd, iPWD, 4); memcpy(mtDump.nt[134].mbc21356e.pack, iPACK, 2); break; case NTAG_216: memcpy(mtDump.nt[229].mbc21356d.pwd, iPWD, 4); memcpy(mtDump.nt[230].mbc21356e.pack, iPACK, 2); break; case NTAG_NONE: default: break; } return (!bFailure); } static bool transmit_bits(const uint8_t *pbtTx, const size_t szTxBits) { // Transmit the bit frame command, we don't use the arbitrary parity feature if ((szRxBits = nfc_initiator_transceive_bits(pnd, pbtTx, szTxBits, NULL, abtRx, sizeof(abtRx), NULL)) < 0) return false; return true; } static bool transmit_bytes(const uint8_t *pbtTx, const size_t szTx) { if ((szRx = nfc_initiator_transceive_bytes(pnd, pbtTx, szTx, abtRx, sizeof(abtRx), 0)) < 0) return false; return true; } static bool raw_mode_start(void) { // Configure the CRC if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, false) < 0) { nfc_perror(pnd, "nfc_configure"); return false; } // Use raw send/receive methods if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) { nfc_perror(pnd, "nfc_configure"); return false; } return true; } static bool raw_mode_end(void) { // reset reader // Configure the CRC if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, true) < 0) { nfc_perror(pnd, "nfc_device_set_property_bool"); return false; } // Switch off raw send/receive methods if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, true) < 0) { nfc_perror(pnd, "nfc_device_set_property_bool"); return false; } return true; } static bool get_ev1_version(void) { if (!raw_mode_start()) return false; iso14443a_crc_append(abtEV1, 1); if (!transmit_bytes(abtEV1, 3)) { raw_mode_end(); return false; } if (!raw_mode_end()) return false; if (!szRx) return false; return true; } static bool ev1_load_pwd(uint8_t target[4], const char *pwd) { unsigned int tmp[4]; if (sscanf(pwd, "%2x%2x%2x%2x", &tmp[0], &tmp[1], &tmp[2], &tmp[3]) != 4) return false; target[0] = tmp[0]; target[1] = tmp[1]; target[2] = tmp[2]; target[3] = tmp[3]; return true; } static bool ev1_pwd_auth(uint8_t *pwd) { if (!raw_mode_start()) return false; memcpy(&abtPWAuth[1], pwd, 4); iso14443a_crc_append(abtPWAuth, 5); if (!transmit_bytes(abtPWAuth, 7)) return false; if (!raw_mode_end()) return false; return true; } static bool unlock_card(void) { if (!raw_mode_start()) return false; iso14443a_crc_append(abtHalt, 2); transmit_bytes(abtHalt, 4); // now send unlock if (!transmit_bits(abtUnlock1, 7)) { return false; } if (!transmit_bytes(abtUnlock2, 1)) { return false; } if (!raw_mode_end()) return false; return true; } static bool check_magic() { // Firstly try to directly read and re-write the first three pages // if this fail try to unlock with chinese magic backdoor bool directWrite = true; // Try to read pages 0, 1, 2 uint8_t original_b0[12]; printf("Checking if UL badge is DirectWrite...\n"); if (nfc_initiator_mifare_cmd(pnd, MC_READ, 0, &mp)) { memcpy(original_b0, mp.mpd.abtData, 12); printf(" Original Block 0 (Pages 0-2): "); for(int i=0;i<12;i++){ printf("%02x", original_b0[i]); } printf("\n"); printf(" Original UID: %02x%02x%02x%02x%02x%02x%02x\n", original_b0[0], original_b0[1], original_b0[2], original_b0[4], original_b0[5], original_b0[6], original_b0[7]); } else { printf("!\nError: unable to read block 0x%02x\n", 0); directWrite = false; } printf(" Attempt to write Block 0 (pages 0-2) ...\n"); for (uint32_t page = 0; page <= 2; page++) { printf(" Writing Page %i:", page); memcpy(mp.mpd.abtData, original_b0 + page*4, 4); for(int i=0;i<4;i++){ printf(" %02x", mp.mpd.abtData[i]); } printf("\n"); if (!nfc_initiator_mifare_cmd(pnd, MC_WRITE, page, &mp)) { printf(" Failure writing Page %i\n", page); directWrite = false; break; } } if(directWrite){ printf(" Block 0 written successfully\n"); printf("Card is DirectWrite\n"); return true; } else { printf("Card is not DirectWrite\n"); return unlock_card(); } } static bool write_card(bool write_otp, bool write_lock, bool write_dyn_lock, bool write_uid) { uint32_t uiBlock = 0; bool bFailure = false; uint32_t uiWrittenPages = 0; uint32_t uiSkippedPages = 0; uint32_t uiFailedPages = 0; char buffer[BUFSIZ]; if (!write_otp) { printf("Write OTP/Capability Bytes ? [yN] "); if (!fgets(buffer, BUFSIZ, stdin)) { ERR("Unable to read standard input."); } write_otp = ((buffer[0] == 'y') || (buffer[0] == 'Y')); } // Lock Bytes are OTP if set, so warn if (!write_lock) { printf("Write Lock Bytes (Warning: OTP if set) ? [yN] "); if (!fgets(buffer, BUFSIZ, stdin)) { ERR("Unable to read standard input."); } write_lock = ((buffer[0] == 'y') || (buffer[0] == 'Y')); } // NTAG and MF0UL21 have additional lock bytes if (!write_dyn_lock && (iNTAGType != NTAG_NONE || iEV1Type == EV1_UL21)) { printf("Write Dynamic Lock Bytes ? [yN] "); if (!fgets(buffer, BUFSIZ, stdin)) { ERR("Unable to read standard input."); } write_dyn_lock = ((buffer[0] == 'y') || (buffer[0] == 'Y')); } if (!write_uid) { printf("Write UID bytes (only for special writeable UID cards) ? [yN] "); if (!fgets(buffer, BUFSIZ, stdin)) { ERR("Unable to read standard input."); } write_uid = ((buffer[0] == 'y') || (buffer[0] == 'Y')); } /* We may need to skip 2 first pages. */ if (!write_uid) { printf("Writing %d pages |", uiBlocks); printf("ss"); uiSkippedPages = 2; } else { if (!check_magic()) { printf("\nUnable to unlock card - are you sure the card is magic?\n"); return false; } printf("Writing %d pages |", uiBlocks); } for (uint32_t page = uiSkippedPages; page < uiBlocks; page++) { if ((!write_lock) && page == 0x2) { printf("s"); uiSkippedPages++; continue; } // OTP/Capability blocks if ((page == 0x3) && (!write_otp)) { printf("s"); uiSkippedPages++; continue; } // NTAG and MF0UL21 have Dynamic Lock Bytes if (((iEV1Type == EV1_UL21 && page == 0x24) || \ (iNTAGType == NTAG_213 && page == 0x28) || \ (iNTAGType == NTAG_215 && page == 0x82) || \ (iNTAGType == NTAG_216 && page == 0xe2)) && (!write_dyn_lock)) { printf("s"); uiSkippedPages++; continue; } // Check if the previous readout went well if (bFailure) { // When a failure occured we need to redo the anti-collision if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) { ERR("tag was removed"); return false; } bFailure = false; } // For the Mifare Ultralight, this write command can be used // in compatibility mode, which only actually writes the first // page (4 bytes). The Ultralight-specific Write command only // writes one page at a time. uiBlock = page / 4; memcpy(mp.mpd.abtData, mtDump.ul[uiBlock].mbd.abtData + ((page % 4) * 4), 4); memset(mp.mpd.abtData + 4, 0, 12); if (!nfc_initiator_mifare_cmd(pnd, MC_WRITE, page, &mp)) bFailure = true; print_success_or_failure(bFailure, &uiWrittenPages, &uiFailedPages); } printf("|\n"); printf("Done, %d of %d pages written (%d pages skipped, %d pages failed).\n", uiWrittenPages, uiBlocks, uiSkippedPages, uiFailedPages); return true; } static int list_passive_targets(nfc_device *_pnd) { int res = 0; nfc_target ant[MAX_TARGET_COUNT]; if (nfc_initiator_init(_pnd) < 0) { return -EXIT_FAILURE; } if ((res = nfc_initiator_list_passive_targets(_pnd, nmMifare, ant, MAX_TARGET_COUNT)) >= 0) { int i; if (res > 0) printf("%d ISO14443A passive target(s) found:\n", res); for (i = 0; i < res; i++) { size_t szPos; printf("\t"); for (szPos = 0; szPos < ant[i].nti.nai.szUidLen; szPos++) { printf("%02x", ant[i].nti.nai.abtUid[szPos]); } printf("\n"); } } return 0; } static size_t str_to_uid(const char *str, uint8_t *uid) { uint8_t i; memset(uid, 0x0, MAX_UID_LEN); i = 0; while ((*str != '\0') && ((i >> 1) < MAX_UID_LEN)) { char nibble[2] = { 0x00, '\n' }; /* for strtol */ nibble[0] = *str++; if (isxdigit(nibble[0])) { if (isupper(nibble[0])) nibble[0] = tolower(nibble[0]); uid[i >> 1] |= strtol(nibble, NULL, 16) << ((i % 2) ? 0 : 4) & ((i % 2) ? 0x0f : 0xf0); i++; } } return i >> 1; } static void print_usage(const char *argv[]) { printf("Usage: %s r|w [OPTIONS]\n", argv[0]); printf("Arguments:\n"); printf("\tr|w - Perform read or write\n"); printf("\t - MiFare Dump (MFD) used to write (card to MFD) or (MFD to card)\n"); printf("Options:\n"); printf("\t--otp - Don't prompt for OTP Bytes writing (Assume yes)\n"); printf("\t--lock - Don't prompt for Lock Bytes (OTP) writing (Assume yes)\n"); printf("\t--dynlock - Don't prompt for Dynamic Lock Bytes writing (Assume yes)\n"); printf("\t--uid - Don't prompt for UID writing (Assume yes)\n"); printf("\t--full - Assume full card write (UID + OTP + Lockbytes + Dynamic Lockbytes)\n"); printf("\t--with-uid - Specify UID to read/write from\n"); printf("\t--pw - Specify 8 HEX digit PASSWORD for EV1\n"); printf("\t--partial - Allow source data size to be other than tag capacity\n"); } int main(int argc, const char *argv[]) { int iAction = 0; size_t iDumpSize = sizeof(mifareul_tag); uint8_t iUID[MAX_UID_LEN] = { 0x0 }; size_t szUID = 0; bool bOTP = false; bool bLock = false; bool bDynLock = false; bool bUID = false; bool bPWD = false; bool bPart = false; bool bFilename = false; FILE *pfDump; if (argc == 0) { print_usage(argv); exit(EXIT_FAILURE); } DBG("\nChecking arguments and settings\n"); // Get commandline options for (int arg = 1; arg < argc; arg++) { if (0 == strcmp(argv[arg], "r")) { iAction = 1; } else if (0 == strcmp(argv[arg], "w")) { iAction = 2; } else if (0 == strcmp(argv[arg], "--with-uid")) { if (arg + 1 == argc) { ERR("Please supply a UID of 4, 7 or 10 bytes long. Ex: a1:b2:c3:d4"); exit(EXIT_FAILURE); } szUID = str_to_uid(argv[++arg], iUID); } else if (0 == strcmp(argv[arg], "--full")) { bOTP = true; bLock = true; bDynLock = true; bUID = true; } else if (0 == strcmp(argv[arg], "--otp")) { bOTP = true; } else if (0 == strcmp(argv[arg], "--lock")) { bLock = true; } else if (0 == strcmp(argv[arg], "--dynlock")) { bDynLock = true; } else if (0 == strcmp(argv[arg], "--uid")) { bUID = true; } else if (0 == strcmp(argv[arg], "--check-magic")) { iAction = 3; } else if (0 == strcmp(argv[arg], "--partial")) { bPart = true; } else if (0 == strcmp(argv[arg], "--pw")) { bPWD = true; if (arg + 1 == argc || strlen(argv[++arg]) != 8 || ! ev1_load_pwd(iPWD, argv[arg])) { ERR("Please supply a PASSWORD of 8 HEX digits"); exit(EXIT_FAILURE); } } else { //Skip validation of the filename if (arg != 2) { ERR("%s is not a supported option.", argv[arg]); print_usage(argv); exit(EXIT_FAILURE); } else { bFilename = true; } } } if (iAction != 3 && !bFilename) { ERR("Please supply a Mifare Dump filename"); exit(EXIT_FAILURE); } nfc_context *context; nfc_init(&context); if (context == NULL) { ERR("Unable to init libnfc (malloc)"); exit(EXIT_FAILURE); } // Try to open the NFC device pnd = nfc_open(context, NULL); if (pnd == NULL) { ERR("Error opening NFC device"); nfc_exit(context); exit(EXIT_FAILURE); } printf("NFC device: %s opened\n", nfc_device_get_name(pnd)); if (list_passive_targets(pnd)) { nfc_perror(pnd, "nfc_device_set_property_bool"); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } if (nfc_initiator_init(pnd) < 0) { nfc_perror(pnd, "nfc_initiator_init"); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } // Let the device only try once to find a tag if (nfc_device_set_property_bool(pnd, NP_INFINITE_SELECT, false) < 0) { nfc_perror(pnd, "nfc_device_set_property_bool"); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } // Try to find a MIFARE Ultralight tag if (nfc_initiator_select_passive_target(pnd, nmMifare, (szUID) ? iUID : NULL, szUID, &nt) <= 0) { ERR("no tag was found\n"); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } // Test if we are dealing with a MIFARE compatible tag if (nt.nti.nai.abtAtqa[1] != 0x44) { ERR("tag is not a MIFARE Ultralight card\n"); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } // Get the info from the current tag printf("Using MIFARE Ultralight card with UID: "); size_t szPos; for (szPos = 0; szPos < nt.nti.nai.szUidLen; szPos++) { printf("%02x", nt.nti.nai.abtUid[szPos]); } printf("\n"); // test if tag is EV1 or NTAG if (get_ev1_version()) { if (!bPWD) printf("WARNING: Tag is EV1 or NTAG - PASSWORD may be required\n"); if (abtRx[6] == 0x0b || abtRx[6] == 0x00) { printf("EV1 type: MF0UL11 (48 bytes)\n"); uiBlocks = 20; // total number of 4 byte 'pages' iDumpSize = uiBlocks * 4; iEV1Type = EV1_UL11; } else if (abtRx[6] == 0x0e) { printf("EV1 type: MF0UL21 (128 user bytes)\n"); uiBlocks = 41; iDumpSize = uiBlocks * 4; iEV1Type = EV1_UL21; } else if (abtRx[6] == 0x0f) { printf("NTAG Type: NTAG213 (144 user bytes)\n"); uiBlocks = 45; iDumpSize = uiBlocks * 4; iNTAGType = NTAG_213; } else if (abtRx[6] == 0x11) { printf("NTAG Type: NTAG215 (504 user bytes)\n"); uiBlocks = 135; iDumpSize = uiBlocks * 4; iNTAGType = NTAG_215; } else if (abtRx[6] == 0x13) { printf("NTAG Type: NTAG216 (888 user bytes)\n"); uiBlocks = 231; iDumpSize = uiBlocks * 4; iNTAGType = NTAG_216; } else { printf("unknown! (0x%02x)\n", abtRx[6]); exit(EXIT_FAILURE); } } else { // re-init non EV1 tag if (nfc_initiator_select_passive_target(pnd, nmMifare, (szUID) ? iUID : NULL, szUID, &nt) <= 0) { ERR("no tag was found\n"); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } } // EV1 login required if (bPWD) { printf("Authing with PWD: %02x%02x%02x%02x ", iPWD[0], iPWD[1], iPWD[2], iPWD[3]); if (!ev1_pwd_auth(iPWD)) { printf("\n"); ERR("AUTH failed!\n"); exit(EXIT_FAILURE); } else { printf("Success - PACK: %02x%02x\n", abtRx[0], abtRx[1]); memcpy(iPACK, abtRx, 2); } } if (iAction == 1) { memset(&mtDump, 0x00, sizeof(mtDump)); } else if (iAction == 2) { pfDump = fopen(argv[2], "rb"); if (pfDump == NULL) { ERR("Could not open dump file: %s\n", argv[2]); exit(EXIT_FAILURE); } size_t szDump; if (((szDump = fread(&mtDump, 1, sizeof(mtDump), pfDump)) != iDumpSize && !bPart) || szDump <= 0) { ERR("Could not read from dump file or size mismatch: %s (read %lu, expected %lu)\n", argv[2], (unsigned long)szDump, (unsigned long)iDumpSize); fclose(pfDump); exit(EXIT_FAILURE); } if (szDump != iDumpSize) printf("Performing partial write\n"); fclose(pfDump); DBG("Successfully opened the dump file\n"); } else if (iAction == 3) { DBG("Switching to Check Magic Mode\n"); } else { ERR("Unable to determine operating mode"); exit(EXIT_FAILURE); } if (iAction == 1) { bool bRF = read_card(); printf("Writing data to file: %s ... ", argv[2]); fflush(stdout); pfDump = fopen(argv[2], "wb"); if (pfDump == NULL) { printf("Could not open file: %s\n", argv[2]); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } if (fwrite(&mtDump, 1, uiReadPages * 4, pfDump) != uiReadPages * 4) { printf("Could not write to file: %s\n", argv[2]); fclose(pfDump); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } fclose(pfDump); printf("Done.\n"); if (!bRF) printf("Warning! Read failed - partial data written to file!\n"); } else if (iAction == 2) { write_card(bOTP, bLock, bDynLock, bUID); } else if (iAction == 3) { if (!check_magic()) { printf("Card is not magic\n"); nfc_close(pnd); nfc_exit(context); exit(EXIT_FAILURE); } else { printf("Card is magic\n"); } } nfc_close(pnd); nfc_exit(context); exit(EXIT_SUCCESS); }