/*- * Public platform independent Near Field Communication (NFC) library examples * * Copyright (C) 2009, Roel Verdult * Copyright (C) 2010, Romuald Conty, Romain Tartière * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2 )Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Note that this license only applies on the examples, NFC library itself is under LGPL * */ /** * @file nfc-utils.c * @brief Provide some examples shared functions like print, parity calculation, options parsing. */ #include #include #include "nfc-utils.h" struct card_atqa { uint16_t atqa; uint16_t mask; char type[128]; // list of up to 8 SAK values compatible with this ATQA int saklist[8]; }; struct card_sak { uint8_t sak; uint8_t mask; char type[128]; }; struct card_atqa const_ca[] = { { 0x0044, 0xffff, "MIFARE Ultralight", {0, -1} }, { 0x0044, 0xffff, "MIFARE Ultralight C", {0, -1} }, { 0x0004, 0xff0f, "MIFARE Mini 0.3K", {1, -1} }, { 0x0004, 0xff0f, "MIFARE Classic 1K", {2, -1} }, { 0x0002, 0xff0f, "MIFARE Classic 4K", {3, -1} }, { 0x0004, 0xffff, "MIFARE Plus (4 Byte UID or 4 Byte RID)", {4, 5, 6, 7, 8, 9, -1} }, { 0x0002, 0xffff, "MIFARE Plus (4 Byte UID or 4 Byte RID)", {4, 5, 6, 7, 8, 9, -1} }, { 0x0044, 0xffff, "MIFARE Plus (7 Byte UID)", {4, 5, 6, 7, 8, 9, -1} }, { 0x0042, 0xffff, "MIFARE Plus (7 Byte UID)", {4, 5, 6, 7, 8, 9, -1} }, { 0x0344, 0xffff, "MIFARE DESFire", {10, 11, -1} }, { 0x0044, 0xffff, "P3SR008", { -1} }, // TODO we need SAK info { 0x0004, 0xf0ff, "SmartMX with MIFARE 1K emulation", {12, -1} }, { 0x0002, 0xf0ff, "SmartMX with MIFARE 4K emulation", {12, -1} }, { 0x0048, 0xf0ff, "SmartMX with 7 Byte UID", {12, -1} } }; struct card_sak const_cs[] = { {0x00, 0xff, "" }, // 00 MIFARE Ultralight / Ultralight C {0x09, 0xff, "" }, // 01 MIFARE Mini 0.3K {0x08, 0xff, "" }, // 02 MIFARE Classic 1K {0x18, 0xff, "" }, // 03 MIFARE Classik 4K {0x08, 0xff, " 2K, Security level 1" }, // 04 MIFARE Plus {0x18, 0xff, " 4K, Security level 1" }, // 05 MIFARE Plus {0x10, 0xff, " 2K, Security level 2" }, // 06 MIFARE Plus {0x11, 0xff, " 4K, Security level 2" }, // 07 MIFARE Plus {0x20, 0xff, " 2K, Security level 3" }, // 08 MIFARE Plus {0x20, 0xff, " 4K, Security level 3" }, // 09 MIFARE Plus {0x20, 0xff, " 4K" }, // 10 MIFARE DESFire {0x20, 0xff, " EV1 2K/4K/8K" }, // 11 MIFARE DESFire {0x00, 0x00, "" }, // 12 SmartMX }; uint8_t oddparity(const uint8_t bt) { // cf http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel return (0x9669 >> ((bt ^(bt >> 4)) & 0xF)) & 1; } void oddparity_bytes_ts(const uint8_t *pbtData, const size_t szLen, uint8_t *pbtPar) { size_t szByteNr; // Calculate the parity bits for the command for (szByteNr = 0; szByteNr < szLen; szByteNr++) { pbtPar[szByteNr] = oddparity(pbtData[szByteNr]); } } void print_hex(const uint8_t *pbtData, const size_t szBytes) { size_t szPos; for (szPos = 0; szPos < szBytes; szPos++) { printf("%02x ", pbtData[szPos]); } printf("\n"); } void print_hex_bits(const uint8_t *pbtData, const size_t szBits) { uint8_t uRemainder; size_t szPos; size_t szBytes = szBits / 8; for (szPos = 0; szPos < szBytes; szPos++) { printf("%02x ", pbtData[szPos]); } uRemainder = szBits % 8; // Print the rest bits if (uRemainder != 0) { if (uRemainder < 5) printf("%01x (%d bits)", pbtData[szBytes], uRemainder); else printf("%02x (%d bits)", pbtData[szBytes], uRemainder); } printf("\n"); } void print_hex_par(const uint8_t *pbtData, const size_t szBits, const uint8_t *pbtDataPar) { uint8_t uRemainder; size_t szPos; size_t szBytes = szBits / 8; for (szPos = 0; szPos < szBytes; szPos++) { printf("%02x", pbtData[szPos]); if (oddparity(pbtData[szPos]) != pbtDataPar[szPos]) { printf("! "); } else { printf(" "); } } uRemainder = szBits % 8; // Print the rest bits, these cannot have parity bit if (uRemainder != 0) { if (uRemainder < 5) printf("%01x (%d bits)", pbtData[szBytes], uRemainder); else printf("%02x (%d bits)", pbtData[szBytes], uRemainder); } printf("\n"); } #define SAK_UID_NOT_COMPLETE 0x04 #define SAK_ISO14443_4_COMPLIANT 0x20 #define SAK_ISO18092_COMPLIANT 0x40 void print_nfc_iso14443a_info(const nfc_iso14443a_info nai, bool verbose) { printf(" ATQA (SENS_RES): "); print_hex(nai.abtAtqa, 2); if (verbose) { printf("* UID size: "); switch ((nai.abtAtqa[1] & 0xc0) >> 6) { case 0: printf("single\n"); break; case 1: printf("double\n"); break; case 2: printf("triple\n"); break; case 3: printf("RFU\n"); break; } printf("* bit frame anticollision "); switch (nai.abtAtqa[1] & 0x1f) { case 0x01: case 0x02: case 0x04: case 0x08: case 0x10: printf("supported\n"); break; default: printf("not supported\n"); break; } } printf(" UID (NFCID%c): ", (nai.abtUid[0] == 0x08 ? '3' : '1')); print_hex(nai.abtUid, nai.szUidLen); if (verbose) { if (nai.abtUid[0] == 0x08) { printf("* Random UID\n"); } } printf(" SAK (SEL_RES): "); print_hex(&nai.btSak, 1); if (verbose) { if (nai.btSak & SAK_UID_NOT_COMPLETE) { printf("* Warning! Cascade bit set: UID not complete\n"); } if (nai.btSak & SAK_ISO14443_4_COMPLIANT) { printf("* Compliant with ISO/IEC 14443-4\n"); } else { printf("* Not compliant with ISO/IEC 14443-4\n"); } if (nai.btSak & SAK_ISO18092_COMPLIANT) { printf("* Compliant with ISO/IEC 18092\n"); } else { printf("* Not compliant with ISO/IEC 18092\n"); } } if (nai.szAtsLen) { printf(" ATS: "); print_hex(nai.abtAts, nai.szAtsLen); } if (nai.szAtsLen && verbose) { // Decode ATS according to ISO/IEC 14443-4 (5.2 Answer to select) const int iMaxFrameSizes[] = { 16, 24, 32, 40, 48, 64, 96, 128, 256 }; printf("* Max Frame Size accepted by PICC: %d bytes\n", iMaxFrameSizes[nai.abtAts[0] & 0x0F]); size_t offset = 1; if (nai.abtAts[0] & 0x10) { // TA(1) present uint8_t TA = nai.abtAts[offset]; offset++; printf("* Bit Rate Capability:\n"); if (TA == 0) { printf(" * PICC supports only 106 kbits/s in both directions\n"); } if (TA & 1 << 7) { printf(" * Same bitrate in both directions mandatory\n"); } if (TA & 1 << 4) { printf(" * PICC to PCD, DS=2, bitrate 212 kbits/s supported\n"); } if (TA & 1 << 5) { printf(" * PICC to PCD, DS=4, bitrate 424 kbits/s supported\n"); } if (TA & 1 << 6) { printf(" * PICC to PCD, DS=8, bitrate 847 kbits/s supported\n"); } if (TA & 1 << 0) { printf(" * PCD to PICC, DR=2, bitrate 212 kbits/s supported\n"); } if (TA & 1 << 1) { printf(" * PCD to PICC, DR=4, bitrate 424 kbits/s supported\n"); } if (TA & 1 << 2) { printf(" * PCD to PICC, DR=8, bitrate 847 kbits/s supported\n"); } if (TA & 1 << 3) { printf(" * ERROR unknown value\n"); } } if (nai.abtAts[0] & 0x20) { // TB(1) present uint8_t TB = nai.abtAts[offset]; offset++; printf("* Frame Waiting Time: %.4g ms\n", 256.0 * 16.0 * (1 << ((TB & 0xf0) >> 4)) / 13560.0); if ((TB & 0x0f) == 0) { printf("* No Start-up Frame Guard Time required\n"); } else { printf("* Start-up Frame Guard Time: %.4g ms\n", 256.0 * 16.0 * (1 << (TB & 0x0f)) / 13560.0); } } if (nai.abtAts[0] & 0x40) { // TC(1) present uint8_t TC = nai.abtAts[offset]; offset++; if (TC & 0x1) { printf("* Node ADdress supported\n"); } else { printf("* Node ADdress not supported\n"); } if (TC & 0x2) { printf("* Card IDentifier supported\n"); } else { printf("* Card IDentifier not supported\n"); } } if (nai.szAtsLen > offset) { printf("* Historical bytes Tk: "); print_hex(nai.abtAts + offset, (nai.szAtsLen - offset)); uint8_t CIB = nai.abtAts[offset]; offset++; if (CIB != 0x00 && CIB != 0x10 && (CIB & 0xf0) != 0x80) { printf(" * Proprietary format\n"); if (CIB == 0xc1) { printf(" * Tag byte: Mifare or virtual cards of various types\n"); uint8_t L = nai.abtAts[offset]; offset++; if (L != (nai.szAtsLen - offset)) { printf(" * Warning: Type Identification Coding length (%i)", L); printf(" not matching Tk length (%zi)\n", (nai.szAtsLen - offset)); } if ((nai.szAtsLen - offset - 2) > 0) { // Omit 2 CRC bytes uint8_t CTC = nai.abtAts[offset]; offset++; printf(" * Chip Type: "); switch (CTC & 0xf0) { case 0x00: printf("(Multiple) Virtual Cards\n"); break; case 0x10: printf("Mifare DESFire\n"); break; case 0x20: printf("Mifare Plus\n"); break; default: printf("RFU\n"); break; } printf(" * Memory size: "); switch (CTC & 0x0f) { case 0x00: printf("<1 kbyte\n"); break; case 0x01: printf("1 kbyte\n"); break; case 0x02: printf("2 kbyte\n"); break; case 0x03: printf("4 kbyte\n"); break; case 0x04: printf("8 kbyte\n"); break; case 0x0f: printf("Unspecified\n"); break; default: printf("RFU\n"); break; } } if ((nai.szAtsLen - offset) > 0) { // Omit 2 CRC bytes uint8_t CVC = nai.abtAts[offset]; offset++; printf(" * Chip Status: "); switch (CVC & 0xf0) { case 0x00: printf("Engineering sample\n"); break; case 0x20: printf("Released\n"); break; default: printf("RFU\n"); break; } printf(" * Chip Generation: "); switch (CVC & 0x0f) { case 0x00: printf("Generation 1\n"); break; case 0x01: printf("Generation 2\n"); break; case 0x02: printf("Generation 3\n"); break; case 0x0f: printf("Unspecified\n"); break; default: printf("RFU\n"); break; } } if ((nai.szAtsLen - offset) > 0) { // Omit 2 CRC bytes uint8_t VCS = nai.abtAts[offset]; offset++; printf(" * Specifics (Virtual Card Selection):\n"); if ((VCS & 0x09) == 0x00) { printf(" * Only VCSL supported\n"); } else if ((VCS & 0x09) == 0x01) { printf(" * VCS, VCSL and SVC supported\n"); } if ((VCS & 0x0e) == 0x00) { printf(" * SL1, SL2(?), SL3 supported\n"); } else if ((VCS & 0x0e) == 0x02) { printf(" * SL3 only card\n"); } else if ((VCS & 0x0f) == 0x0e) { printf(" * No VCS command supported\n"); } else if ((VCS & 0x0f) == 0x0f) { printf(" * Unspecified\n"); } else { printf(" * RFU\n"); } } } } else { if (CIB == 0x00) { printf(" * Tk after 0x00 consist of optional consecutive COMPACT-TLV data objects\n"); printf(" followed by a mandatory status indicator (the last three bytes, not in TLV)\n"); printf(" See ISO/IEC 7816-4 8.1.1.3 for more info\n"); } if (CIB == 0x10) { printf(" * DIR data reference: %02x\n", nai.abtAts[offset]); } if (CIB == 0x80) { if (nai.szAtsLen == offset) { printf(" * No COMPACT-TLV objects found, no status found\n"); } else { printf(" * Tk after 0x80 consist of optional consecutive COMPACT-TLV data objects;\n"); printf(" the last data object may carry a status indicator of one, two or three bytes.\n"); printf(" See ISO/IEC 7816-4 8.1.1.3 for more info\n"); } } } } } if (verbose) { printf("\nFingerprinting based on MIFARE type Identification Procedure:\n"); // AN10833 uint16_t atqa = 0; uint8_t sak = 0; uint8_t i, j; bool found_possible_match = false; atqa = (((uint16_t)nai.abtAtqa[0] & 0xff) << 8); atqa += (((uint16_t)nai.abtAtqa[1] & 0xff)); sak = ((uint8_t)nai.btSak & 0xff); for (i = 0; i < sizeof(const_ca) / sizeof(const_ca[0]); i++) { if ((atqa & const_ca[i].mask) == const_ca[i].atqa) { for (j = 0; (j < sizeof(const_ca[i].saklist)) && (const_ca[i].saklist[j] >= 0); j++) { int sakindex = const_ca[i].saklist[j]; if ((sak & const_cs[sakindex].mask) == const_cs[sakindex].sak) { printf("* %s%s\n", const_ca[i].type, const_cs[sakindex].type); found_possible_match = true; } } } } // Other matches not described in // AN10833 MIFARE Type Identification Procedure // but seen in the field: printf("Other possible matches based on ATQA & SAK values:\n"); uint32_t atqasak = 0; atqasak += (((uint32_t)nai.abtAtqa[0] & 0xff) << 16); atqasak += (((uint32_t)nai.abtAtqa[1] & 0xff) << 8); atqasak += ((uint32_t)nai.btSak & 0xff); switch (atqasak) { case 0x000488: printf("* Mifare Classic 1K Infineon\n"); found_possible_match = true; break; case 0x000298: printf("* Gemplus MPCOS\n"); found_possible_match = true; break; case 0x030428: printf("* JCOP31\n"); found_possible_match = true; break; case 0x004820: printf("* JCOP31 v2.4.1\n"); printf("* JCOP31 v2.2\n"); found_possible_match = true; break; case 0x000428: printf("* JCOP31 v2.3.1\n"); found_possible_match = true; break; case 0x000453: printf("* Fudan FM1208SH01\n"); found_possible_match = true; break; case 0x000820: printf("* Fudan FM1208\n"); found_possible_match = true; break; case 0x000238: printf("* MFC 4K emulated by Nokia 6212 Classic\n"); found_possible_match = true; break; case 0x000838: printf("* MFC 4K emulated by Nokia 6131 NFC\n"); found_possible_match = true; break; } if (! found_possible_match) { printf("* Unknown card, sorry\n"); } } } void print_nfc_felica_info(const nfc_felica_info nfi, bool verbose) { (void) verbose; printf(" ID (NFCID2): "); print_hex(nfi.abtId, 8); printf(" Parameter (PAD): "); print_hex(nfi.abtPad, 8); printf(" System Code (SC): "); print_hex(nfi.abtSysCode, 2); } void print_nfc_jewel_info(const nfc_jewel_info nji, bool verbose) { (void) verbose; printf(" ATQA (SENS_RES): "); print_hex(nji.btSensRes, 2); printf(" 4-LSB JEWELID: "); print_hex(nji.btId, 4); } #define PI_ISO14443_4_SUPPORTED 0x01 #define PI_NAD_SUPPORTED 0x01 #define PI_CID_SUPPORTED 0x02 void print_nfc_iso14443b_info(const nfc_iso14443b_info nbi, bool verbose) { const int iMaxFrameSizes[] = { 16, 24, 32, 40, 48, 64, 96, 128, 256 }; printf(" PUPI: "); print_hex(nbi.abtPupi, 4); printf(" Application Data: "); print_hex(nbi.abtApplicationData, 4); printf(" Protocol Info: "); print_hex(nbi.abtProtocolInfo, 3); if (verbose) { printf("* Bit Rate Capability:\n"); if (nbi.abtProtocolInfo[0] == 0) { printf(" * PICC supports only 106 kbits/s in both directions\n"); } if (nbi.abtProtocolInfo[0] & 1 << 7) { printf(" * Same bitrate in both directions mandatory\n"); } if (nbi.abtProtocolInfo[0] & 1 << 4) { printf(" * PICC to PCD, 1etu=64/fc, bitrate 212 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1 << 5) { printf(" * PICC to PCD, 1etu=32/fc, bitrate 424 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1 << 6) { printf(" * PICC to PCD, 1etu=16/fc, bitrate 847 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1 << 0) { printf(" * PCD to PICC, 1etu=64/fc, bitrate 212 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1 << 1) { printf(" * PCD to PICC, 1etu=32/fc, bitrate 424 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1 << 2) { printf(" * PCD to PICC, 1etu=16/fc, bitrate 847 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1 << 3) { printf(" * ERROR unknown value\n"); } if ((nbi.abtProtocolInfo[1] & 0xf0) <= 0x80) { printf("* Maximum frame sizes: %d bytes\n", iMaxFrameSizes[((nbi.abtProtocolInfo[1] & 0xf0) >> 4)]); } if ((nbi.abtProtocolInfo[1] & 0x0f) == PI_ISO14443_4_SUPPORTED) { printf("* Protocol types supported: ISO/IEC 14443-4\n"); } printf("* Frame Waiting Time: %.4g ms\n", 256.0 * 16.0 * (1 << ((nbi.abtProtocolInfo[2] & 0xf0) >> 4)) / 13560.0); if ((nbi.abtProtocolInfo[2] & (PI_NAD_SUPPORTED | PI_CID_SUPPORTED)) != 0) { printf("* Frame options supported: "); if ((nbi.abtProtocolInfo[2] & PI_NAD_SUPPORTED) != 0) printf("NAD "); if ((nbi.abtProtocolInfo[2] & PI_CID_SUPPORTED) != 0) printf("CID "); printf("\n"); } } } void print_nfc_iso14443bi_info(const nfc_iso14443bi_info nii, bool verbose) { printf(" DIV: "); print_hex(nii.abtDIV, 4); if (verbose) { int version = (nii.btVerLog & 0x1e) >> 1; printf(" Software Version: "); if (version == 15) { printf("Undefined\n"); } else { printf("%i\n", version); } if ((nii.btVerLog & 0x80) && (nii.btConfig & 0x80)) { printf(" Wait Enable: yes"); } } if ((nii.btVerLog & 0x80) && (nii.btConfig & 0x40)) { printf(" ATS: "); print_hex(nii.abtAtr, nii.szAtrLen); } } void print_nfc_iso14443b2sr_info(const nfc_iso14443b2sr_info nsi, bool verbose) { (void) verbose; printf(" UID: "); print_hex(nsi.abtUID, 8); } void print_nfc_iso14443b2ct_info(const nfc_iso14443b2ct_info nci, bool verbose) { (void) verbose; uint32_t uid; uid = (nci.abtUID[3] << 24) + (nci.abtUID[2] << 16) + (nci.abtUID[1] << 8) + nci.abtUID[0]; printf(" UID: "); print_hex(nci.abtUID, sizeof(nci.abtUID)); printf(" UID (decimal): %010u\n", uid); printf(" Product Code: %02X\n", nci.btProdCode); printf(" Fab Code: %02X\n", nci.btFabCode); } void print_nfc_dep_info(const nfc_dep_info ndi, bool verbose) { (void) verbose; printf(" NFCID3: "); print_hex(ndi.abtNFCID3, 10); printf(" BS: %02x\n", ndi.btBS); printf(" BR: %02x\n", ndi.btBR); printf(" TO: %02x\n", ndi.btTO); printf(" PP: %02x\n", ndi.btPP); if (ndi.szGB) { printf("General Bytes: "); print_hex(ndi.abtGB, ndi.szGB); } } void print_nfc_target(const nfc_target nt, bool verbose) { printf("%s (%s%s) target:\n", str_nfc_modulation_type(nt.nm.nmt), str_nfc_baud_rate(nt.nm.nbr), (nt.nm.nmt != NMT_DEP) ? "" : (nt.nti.ndi.ndm == NDM_ACTIVE) ? "active mode" : "passive mode"); switch (nt.nm.nmt) { case NMT_ISO14443A: print_nfc_iso14443a_info(nt.nti.nai, verbose); break; case NMT_JEWEL: print_nfc_jewel_info(nt.nti.nji, verbose); break; case NMT_FELICA: print_nfc_felica_info(nt.nti.nfi, verbose); break; case NMT_ISO14443B: print_nfc_iso14443b_info(nt.nti.nbi, verbose); break; case NMT_ISO14443BI: print_nfc_iso14443bi_info(nt.nti.nii, verbose); break; case NMT_ISO14443B2SR: print_nfc_iso14443b2sr_info(nt.nti.nsi, verbose); break; case NMT_ISO14443B2CT: print_nfc_iso14443b2ct_info(nt.nti.nci, verbose); break; case NMT_DEP: print_nfc_dep_info(nt.nti.ndi, verbose); break; } }