/** * Public platform independent Near Field Communication (NFC) library * * Copyright (C) 2009, Roel Verdult * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see * * * @file libnfc.c * @brief */ #include "libnfc.h" #include #include #include #include "devices.h" #include "bitutils.h" #include "messages.h" // Registers and symbols masks used to covers parts within a register #define REG_CIU_TX_MODE 0x6302 #define SYMBOL_TX_CRC_ENABLE 0x80 #define REG_CIU_RX_MODE 0x6303 #define SYMBOL_RX_CRC_ENABLE 0x80 #define SYMBOL_RX_NO_ERROR 0x08 #define SYMBOL_RX_MULTIPLE 0x04 #define REG_CIU_TX_AUTO 0x6305 #define SYMBOL_FORCE_100_ASK 0x40 #define SYMBOL_AUTO_WAKE_UP 0x20 #define SYMBOL_INITIAL_RF_ON 0x04 #define REG_CIU_MANUAL_RCV 0x630D #define SYMBOL_PARITY_DISABLE 0x10 #define REG_CIU_STATUS2 0x6338 #define SYMBOL_MF_CRYPTO1_ON 0x08 #define REG_CIU_CONTROL 0x633C #define SYMBOL_INITIATOR 0x10 #define SYMBOL_RX_LAST_BITS 0x07 #define REG_CIU_BIT_FRAMING 0x633D #define SYMBOL_TX_LAST_BITS 0x07 // Internal parameters flags #define PARAM_NONE 0x00 #define PARAM_NAD_USED 0x01 #define PARAM_DID_USED 0x02 #define PARAM_AUTO_ATR_RES 0x04 #define PARAM_AUTO_RATS 0x10 #define PARAM_14443_4_PICC 0x20 #define PARAM_NO_AMBLE 0x40 // Radio Field Configure Items // Configuration Data length #define RFCI_FIELD 0x01 // 1 #define RFCI_TIMING 0x02 // 3 #define RFCI_RETRY_DATA 0x04 // 1 #define RFCI_RETRY_SELECT 0x05 // 3 #define RFCI_ANALOG_TYPE_A_106 0x0A // 11 #define RFCI_ANALOG_TYPE_A_212_424 0x0B // 8 #define RFCI_ANALOG_TYPE_B 0x0C // 3 #define RFCI_ANALOG_TYPE_14443_4 0x0D // 9 // PN53X configuration const byte_t pncmd_get_firmware_version [ 2] = { 0xD4,0x02 }; const byte_t pncmd_get_general_status [ 2] = { 0xD4,0x04 }; const byte_t pncmd_get_register [ 4] = { 0xD4,0x06 }; const byte_t pncmd_set_register [ 5] = { 0xD4,0x08 }; const byte_t pncmd_set_parameters [ 3] = { 0xD4,0x12 }; const byte_t pncmd_rf_configure [ 14] = { 0xD4,0x32 }; // Reader const byte_t pncmd_initiator_list_passive [264] = { 0xD4,0x4A }; const byte_t pncmd_initiator_jump_for_dep [ 68] = { 0xD4,0x56 }; const byte_t pncmd_initiator_select [ 3] = { 0xD4,0x54 }; const byte_t pncmd_initiator_deselect [ 3] = { 0xD4,0x44,0x00 }; const byte_t pncmd_initiator_release [ 3] = { 0xD4,0x52,0x00 }; const byte_t pncmd_initiator_set_baud_rate [ 5] = { 0xD4,0x4E }; const byte_t pncmd_initiator_exchange_data [265] = { 0xD4,0x40 }; const byte_t pncmd_initiator_exchange_raw_data [266] = { 0xD4,0x42 }; const byte_t pncmd_initiator_auto_poll [ 5] = { 0xD4,0x60 }; // Target const byte_t pncmd_target_get_data [ 2] = { 0xD4,0x86 }; const byte_t pncmd_target_set_data [264] = { 0xD4,0x8E }; const byte_t pncmd_target_init [ 39] = { 0xD4,0x8C }; const byte_t pncmd_target_virtual_card [ 4] = { 0xD4,0x14 }; const byte_t pncmd_target_receive [ 2] = { 0xD4,0x88 }; const byte_t pncmd_target_send [264] = { 0xD4,0x90 }; const byte_t pncmd_target_get_status [ 2] = { 0xD4,0x8A }; bool pn53x_transceive(const dev_info* pdi, const byte_t* pbtTx, const size_t szTxLen, byte_t* pbtRx, size_t* pszRxLen) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; // Check if receiving buffers are available, if not, replace them if (!pszRxLen || !pbtRx) { pbtRx = abtRx; pszRxLen = &szRxLen; } *pszRxLen = MAX_FRAME_LEN; // Call the tranceive callback function of the current device if (!pdi->pdc->transceive(pdi->ds,pbtTx,szTxLen,pbtRx,pszRxLen)) return false; // Make sure there was no failure reported by the PN53X chip (0x00 == OK) if (pbtRx[0] != 0) return false; // Succesful transmission return true; } byte_t pn53x_get_reg(const dev_info* pdi, uint16_t ui16Reg) { uint8_t ui8Value; size_t szValueLen = 1; byte_t abtCmd[sizeof(pncmd_get_register)]; memcpy(abtCmd,pncmd_get_register,sizeof(pncmd_get_register)); abtCmd[2] = ui16Reg >> 8; abtCmd[3] = ui16Reg & 0xff; // We can not use pn53x_transceive() because abtRx[0] gives no status info pdi->pdc->transceive(pdi->ds,abtCmd,4,&ui8Value,&szValueLen); return ui8Value; } bool pn53x_set_reg(const dev_info* pdi, uint16_t ui16Reg, uint8_t ui8SybmolMask, uint8_t ui8Value) { byte_t abtCmd[sizeof(pncmd_set_register)]; memcpy(abtCmd,pncmd_set_register,sizeof(pncmd_set_register)); abtCmd[2] = ui16Reg >> 8; abtCmd[3] = ui16Reg & 0xff; abtCmd[4] = ui8Value | (pn53x_get_reg(pdi,ui16Reg) & (~ui8SybmolMask)); // We can not use pn53x_transceive() because abtRx[0] gives no status info return pdi->pdc->transceive(pdi->ds,abtCmd,5,NULL,NULL); } bool pn53x_set_parameters(const dev_info* pdi, uint8_t ui8Value) { byte_t abtCmd[sizeof(pncmd_set_parameters)]; memcpy(abtCmd,pncmd_set_parameters,sizeof(pncmd_set_parameters)); abtCmd[2] = ui8Value; // We can not use pn53x_transceive() because abtRx[0] gives no status info return pdi->pdc->transceive(pdi->ds,abtCmd,3,NULL,NULL); } bool pn53x_set_tx_bits(const dev_info* pdi, uint8_t ui8Bits) { // Test if we need to update the transmission bits register setting if (pdi->ui8TxBits != ui8Bits) { // Set the amount of transmission bits in the PN53X chip register if (!pn53x_set_reg(pdi,REG_CIU_BIT_FRAMING,SYMBOL_TX_LAST_BITS,ui8Bits)) return false; // Store the new setting ((dev_info*)pdi)->ui8TxBits = ui8Bits; } return true; } bool pn53x_wrap_frame(const byte_t* pbtTx, const size_t szTxBits, const byte_t* pbtTxPar, byte_t* pbtFrame, size_t* pszFrameBits) { byte_t btFrame; byte_t btData; uint32_t uiBitPos; uint32_t uiDataPos = 0; size_t szBitsLeft = szTxBits; // Make sure we should frame at least something if (szBitsLeft == 0) return false; // Handle a short response (1byte) as a special case if (szBitsLeft < 9) { *pbtFrame = *pbtTx; *pszFrameBits = szTxBits; return true; } // We start by calculating the frame length in bits *pszFrameBits = szTxBits + (szTxBits/8); // Parse the data bytes and add the parity bits // This is really a sensitive process, mirror the frame bytes and append parity bits // buffer = mirror(frame-byte) + parity + mirror(frame-byte) + parity + ... // split "buffer" up in segments of 8 bits again and mirror them // air-bytes = mirror(buffer-byte) + mirror(buffer-byte) + mirror(buffer-byte) + .. while(true) { // Reset the temporary frame byte; btFrame = 0; for (uiBitPos=0; uiBitPos<8; uiBitPos++) { // Copy as much data that fits in the frame byte btData = mirror(pbtTx[uiDataPos]); btFrame |= (btData >> uiBitPos); // Save this frame byte *pbtFrame = mirror(btFrame); // Set the remaining bits of the date in the new frame byte and append the parity bit btFrame = (btData << (8-uiBitPos)); btFrame |= ((pbtTxPar[uiDataPos] & 0x01) << (7-uiBitPos)); // Backup the frame bits we have so far pbtFrame++; *pbtFrame = mirror(btFrame); // Increase the data (without parity bit) position uiDataPos++; // Test if we are done if (szBitsLeft < 9) return true; szBitsLeft -= 8; } // Every 8 data bytes we lose one frame byte to the parities pbtFrame++; } } bool pn53x_unwrap_frame(const byte_t* pbtFrame, const size_t szFrameBits, byte_t* pbtRx, size_t* pszRxBits, byte_t* pbtRxPar) { byte_t btFrame; byte_t btData; uint8_t uiBitPos; uint32_t uiDataPos = 0; byte_t* pbtFramePos = (byte_t*) pbtFrame; size_t szBitsLeft = szFrameBits; // Make sure we should frame at least something if (szBitsLeft == 0) return false; // Handle a short response (1byte) as a special case if (szBitsLeft < 9) { *pbtRx = *pbtFrame; *pszRxBits = szFrameBits; return true; } // Calculate the data length in bits *pszRxBits = szFrameBits - (szFrameBits/9); // Parse the frame bytes, remove the parity bits and store them in the parity array // This process is the reverse of WrapFrame(), look there for more info while(true) { for (uiBitPos=0; uiBitPos<8; uiBitPos++) { btFrame = mirror(pbtFramePos[uiDataPos]); btData = (btFrame << uiBitPos); btFrame = mirror(pbtFramePos[uiDataPos+1]); btData |= (btFrame >> (8-uiBitPos)); pbtRx[uiDataPos] = mirror(btData); if(pbtRxPar != NULL) pbtRxPar[uiDataPos] = ((btFrame >> (7-uiBitPos)) & 0x01); // Increase the data (without parity bit) position uiDataPos++; // Test if we are done if (szBitsLeft < 9) return true; szBitsLeft -= 9; } // Every 8 data bytes we lose one frame byte to the parities pbtFramePos++; } } dev_info* nfc_connect(nfc_device_desc_t* pndd) { dev_info* pdi; uint32_t uiDev; byte_t abtFw[4]; size_t szFwLen = sizeof(abtFw); // Search through the device list for an available device for (uiDev=0; uiDevpcDriver ) ) { DBG("Looking for %s, found %s... Skip it.", pndd->pcDriver, dev_callbacks_list[uiDev].acDriver); continue; } else { DBG("Looking for %s, found %s... Use it.", pndd->pcDriver, dev_callbacks_list[uiDev].acDriver); pdi = dev_callbacks_list[uiDev].connect(pndd); } } // Test if the connection was successful if (pdi != INVALID_DEVICE_INFO) { DBG("[%s] has been claimed.", pdi->acName); // Great we have claimed a device pdi->pdc = &(dev_callbacks_list[uiDev]); // Try to retrieve PN53x chip revision // We can not use pn53x_transceive() because abtRx[0] gives no status info if (!pdi->pdc->transceive(pdi->ds,pncmd_get_firmware_version,2,abtFw,&szFwLen)) { // Failed to get firmware revision??, whatever...let's disconnect and clean up and return err ERR("Failed to get firmware revision for: %s", pdi->acName); pdi->pdc->disconnect(pdi); return INVALID_DEVICE_INFO; } // Add the firmware revision to the device name, PN531 gives 2 bytes info, but PN532 gives 4 switch(pdi->ct) { case CT_PN531: sprintf(pdi->acName,"%s - PN531 v%d.%d",pdi->acName,abtFw[0],abtFw[1]); break; case CT_PN532: sprintf(pdi->acName,"%s - PN532 v%d.%d (0x%02x)",pdi->acName,abtFw[1],abtFw[2],abtFw[3]); break; case CT_PN533: sprintf(pdi->acName,"%s - PN533 v%d.%d (0x%02x)",pdi->acName,abtFw[1],abtFw[2],abtFw[3]); break; } // Reset the ending transmission bits register, it is unknown what the last tranmission used there if (!pn53x_set_reg(pdi,REG_CIU_BIT_FRAMING,SYMBOL_TX_LAST_BITS,0x00)) return INVALID_DEVICE_INFO; // Make sure we reset the CRC and parity to chip handling. if (!nfc_configure(pdi,DCO_HANDLE_CRC,true)) return INVALID_DEVICE_INFO; if (!nfc_configure(pdi,DCO_HANDLE_PARITY,true)) return INVALID_DEVICE_INFO; // Deactivate the CRYPTO1 chiper, it may could cause problems when still active if (!nfc_configure(pdi,DCO_ACTIVATE_CRYPTO1,false)) return INVALID_DEVICE_INFO; return pdi; } else { DBG("No device found using driver: %s", dev_callbacks_list[uiDev].acDriver); } } // To bad, no reader is ready to be claimed return INVALID_DEVICE_INFO; } void nfc_disconnect(dev_info* pdi) { // Release and deselect all active communications nfc_initiator_deselect_tag(pdi); // Disconnect, clean up and release the device pdi->pdc->disconnect(pdi); } bool nfc_configure(dev_info* pdi, const dev_config_option dco, const bool bEnable) { byte_t btValue; byte_t abtCmd[sizeof(pncmd_rf_configure)]; memcpy(abtCmd,pncmd_rf_configure,sizeof(pncmd_rf_configure)); // Make sure we are dealing with a active device if (!pdi->bActive) return false; switch(dco) { case DCO_HANDLE_CRC: // Enable or disable automatic receiving/sending of CRC bytes // TX and RX are both represented by the symbol 0x80 btValue = (bEnable) ? 0x80 : 0x00; if (!pn53x_set_reg(pdi,REG_CIU_TX_MODE,SYMBOL_TX_CRC_ENABLE,btValue)) return false; if (!pn53x_set_reg(pdi,REG_CIU_RX_MODE,SYMBOL_RX_CRC_ENABLE,btValue)) return false; pdi->bCrc = bEnable; break; case DCO_HANDLE_PARITY: // Handle parity bit by PN53X chip or parse it as data bit btValue = (bEnable) ? 0x00 : SYMBOL_PARITY_DISABLE; if (!pn53x_set_reg(pdi,REG_CIU_MANUAL_RCV,SYMBOL_PARITY_DISABLE,btValue)) return false; pdi->bPar = bEnable; break; case DCO_ACTIVATE_FIELD: abtCmd[2] = RFCI_FIELD; abtCmd[3] = (bEnable) ? 1 : 0; // We can not use pn53x_transceive() because abtRx[0] gives no status info if (!pdi->pdc->transceive(pdi->ds,abtCmd,4,NULL,NULL)) return false; break; case DCO_ACTIVATE_CRYPTO1: btValue = (bEnable) ? SYMBOL_MF_CRYPTO1_ON : 0x00; if (!pn53x_set_reg(pdi,REG_CIU_STATUS2,SYMBOL_MF_CRYPTO1_ON,btValue)) return false; break; case DCO_INFINITE_SELECT: // Retry format: 0x00 means only 1 try, 0xff means infinite abtCmd[2] = RFCI_RETRY_SELECT; abtCmd[3] = (bEnable) ? 0xff : 0x00; // MxRtyATR, default: active = 0xff, passive = 0x02 abtCmd[4] = (bEnable) ? 0xff : 0x00; // MxRtyPSL, default: 0x01 abtCmd[5] = (bEnable) ? 0xff : 0x00; // MxRtyPassiveActivation, default: 0xff // We can not use pn53x_transceive() because abtRx[0] gives no status info if (!pdi->pdc->transceive(pdi->ds,abtCmd,6,NULL,NULL)) return false; break; case DCO_ACCEPT_INVALID_FRAMES: btValue = (bEnable) ? SYMBOL_RX_NO_ERROR : 0x00; if (!pn53x_set_reg(pdi,REG_CIU_RX_MODE,SYMBOL_RX_NO_ERROR,btValue)) return false; break; case DCO_ACCEPT_MULTIPLE_FRAMES: btValue = (bEnable) ? SYMBOL_RX_MULTIPLE : 0x00; if (!pn53x_set_reg(pdi,REG_CIU_RX_MODE,SYMBOL_RX_MULTIPLE,btValue)) return false; return true; break; } // When we reach this, the configuration is completed and succesful return true; } bool nfc_initiator_init(const dev_info* pdi) { // Make sure we are dealing with a active device if (!pdi->bActive) return false; // Set the PN53X to force 100% ASK Modified miller decoding (default for 14443A cards) if (!pn53x_set_reg(pdi,REG_CIU_TX_AUTO,SYMBOL_FORCE_100_ASK,0x40)) return false; // Configure the PN53X to be an Initiator or Reader/Writer if (!pn53x_set_reg(pdi,REG_CIU_CONTROL,SYMBOL_INITIATOR,0x10)) return false; return true; } bool nfc_initiator_select_dep_target(const dev_info* pdi, const init_modulation im, const byte_t* pbtPidData, const size_t szPidDataLen, const byte_t* pbtNFCID3i, const size_t szNFCID3iDataLen, const byte_t *pbtGbData, const size_t szGbDataLen, tag_info* pti) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; size_t offset; byte_t abtCmd[sizeof(pncmd_initiator_jump_for_dep)]; memcpy(abtCmd,pncmd_initiator_jump_for_dep,sizeof(pncmd_initiator_jump_for_dep)); if(im == IM_ACTIVE_DEP) { abtCmd[2] = 0x01; /* active DEP */ } abtCmd[3] = 0x00; /* baud rate = 106kbps */ offset = 5; if(pbtPidData && im != IM_ACTIVE_DEP) { /* can't have passive initiator data when using active mode */ abtCmd[4] |= 0x01; memcpy(abtCmd+offset,pbtPidData,szPidDataLen); offset+= szPidDataLen; } if(pbtNFCID3i) { abtCmd[4] |= 0x02; memcpy(abtCmd+offset,pbtNFCID3i,szNFCID3iDataLen); offset+= szNFCID3iDataLen; } if(pbtGbData) { abtCmd[4] |= 0x04; memcpy(abtCmd+offset,pbtGbData,szGbDataLen); offset+= szGbDataLen; } // Try to find a target, call the transceive callback function of the current device if (!pn53x_transceive(pdi,abtCmd,5+szPidDataLen+szNFCID3iDataLen+szGbDataLen,abtRx,&szRxLen)) return false; // Make sure one target has been found, the PN53X returns 0x00 if none was available if (abtRx[1] != 1) return false; // Is a target info struct available if (pti) { memcpy(pti->tid.NFCID3i,abtRx+2,10); pti->tid.btDID = abtRx[12]; pti->tid.btBSt = abtRx[13]; pti->tid.btBRt = abtRx[14]; } return true; } bool nfc_initiator_select_tag(const dev_info* pdi, const init_modulation im, const byte_t* pbtInitData, const size_t szInitDataLen, tag_info* pti) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; byte_t abtCmd[sizeof(pncmd_initiator_list_passive)]; memcpy(abtCmd,pncmd_initiator_list_passive,sizeof(pncmd_initiator_list_passive)); // Make sure we are dealing with a active device if (!pdi->bActive) return false; abtCmd[2] = 1; // MaxTg, we only want to select 1 tag at the time abtCmd[3] = im; // BrTy, the type of init modulation used for polling a passive tag // Set the optional initiator data (used for Felica, ISO14443B, Topaz Polling or for ISO14443A selecting a specific UID). if (pbtInitData) memcpy(abtCmd+4,pbtInitData,szInitDataLen); // Try to find a tag, call the tranceive callback function of the current device szRxLen = MAX_FRAME_LEN; // We can not use pn53x_transceive() because abtRx[0] gives no status info if (!pdi->pdc->transceive(pdi->ds,abtCmd,4+szInitDataLen,abtRx,&szRxLen)) return false; // Make sure one tag has been found, the PN53X returns 0x00 if none was available if (abtRx[0] != 1) return false; // Is a tag info struct available if (pti) { // Fill the tag info struct with the values corresponding to this init modulation switch(im) { case IM_ISO14443A_106: // Somehow they switched the lower and upper ATQA bytes around for the PN531 chipset if (pdi->ct == CT_PN531) { pti->tia.abtAtqa[0] = abtRx[3]; pti->tia.abtAtqa[1] = abtRx[2]; } else { memcpy(pti->tia.abtAtqa,abtRx+2,2); } pti->tia.btSak = abtRx[4]; // Copy the NFCID1 pti->tia.szUidLen = abtRx[5]; memcpy(pti->tia.abtUid,abtRx+6,pti->tia.szUidLen); // Did we received an optional ATS (Smardcard ATR) if (szRxLen > pti->tia.szUidLen+6) { pti->tia.szAtsLen = abtRx[pti->tia.szUidLen+6]; memcpy(pti->tia.abtAts,abtRx+pti->tia.szUidLen+6,pti->tia.szAtsLen); } else { pti->tia.szAtsLen = 0; } break; case IM_FELICA_212: case IM_FELICA_424: // Store the mandatory info pti->tif.szLen = abtRx[2]; pti->tif.btResCode = abtRx[3]; // Copy the NFCID2t memcpy(pti->tif.abtId,abtRx+4,8); // Copy the felica padding memcpy(pti->tif.abtPad,abtRx+12,8); // Test if the System code (SYST_CODE) is available if (szRxLen > 20) { memcpy(pti->tif.abtSysCode,abtRx+20,2); } break; case IM_ISO14443B_106: // Store the mandatory info memcpy(pti->tib.abtAtqb,abtRx+2,12); // Ignore the 0x1D byte, and just store the 4 byte id memcpy(pti->tib.abtId,abtRx+15,4); pti->tib.btParam1 = abtRx[19]; pti->tib.btParam2 = abtRx[20]; pti->tib.btParam3 = abtRx[21]; pti->tib.btParam4 = abtRx[22]; // Test if the Higher layer (INF) is available if (szRxLen > 22) { pti->tib.szInfLen = abtRx[23]; memcpy(pti->tib.abtInf,abtRx+24,pti->tib.szInfLen); } else { pti->tib.szInfLen = 0; } break; case IM_JEWEL_106: // Store the mandatory info memcpy(pti->tij.btSensRes,abtRx+2,2); memcpy(pti->tij.btId,abtRx+4,4); break; default: // Should not be possible, so whatever... break; } } return true; } bool nfc_initiator_deselect_tag(const dev_info* pdi) { return (pn53x_transceive(pdi,pncmd_initiator_deselect,3,NULL,NULL)); } bool nfc_initiator_transceive_bits(const dev_info* pdi, const byte_t* pbtTx, const size_t szTxBits, const byte_t* pbtTxPar, byte_t* pbtRx, size_t* pszRxBits, byte_t* pbtRxPar) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; size_t szFrameBits = 0; size_t szFrameBytes = 0; uint8_t ui8Bits = 0; byte_t abtCmd[sizeof(pncmd_initiator_exchange_raw_data)]; memcpy(abtCmd,pncmd_initiator_exchange_raw_data,sizeof(pncmd_initiator_exchange_raw_data)); // Check if we should prepare the parity bits ourself if (!pdi->bPar) { // Convert data with parity to a frame pn53x_wrap_frame(pbtTx,szTxBits,pbtTxPar,abtCmd+2,&szFrameBits); } else { szFrameBits = szTxBits; } // Retrieve the leading bits ui8Bits = szFrameBits%8; // Get the amount of frame bytes + optional (1 byte if there are leading bits) szFrameBytes = (szFrameBits/8)+((ui8Bits==0)?0:1); // When the parity is handled before us, we just copy the data if (pdi->bPar) memcpy(abtCmd+2,pbtTx,szFrameBytes); // Set the amount of transmission bits in the PN53X chip register if (!pn53x_set_tx_bits(pdi,ui8Bits)) return false; // Send the frame to the PN53X chip and get the answer // We have to give the amount of bytes + (the two command bytes 0xD4, 0x42) if (!pn53x_transceive(pdi,abtCmd,szFrameBytes+2,abtRx,&szRxLen)) return false; // Get the last bit-count that is stored in the received byte ui8Bits = pn53x_get_reg(pdi,REG_CIU_CONTROL) & SYMBOL_RX_LAST_BITS; // Recover the real frame length in bits szFrameBits = ((szRxLen-1-((ui8Bits==0)?0:1))*8)+ui8Bits; // Ignore the status byte from the PN53X here, it was checked earlier in pn53x_transceive() // Check if we should recover the parity bits ourself if (!pdi->bPar) { // Unwrap the response frame pn53x_unwrap_frame(abtRx+1,szFrameBits,pbtRx,pszRxBits,pbtRxPar); } else { // Save the received bits *pszRxBits = szFrameBits; // Copy the received bytes memcpy(pbtRx,abtRx+1,szRxLen-1); } // Everything went successful return true; } bool nfc_initiator_transceive_dep_bytes(const dev_info* pdi, const byte_t* pbtTx, const size_t szTxLen, byte_t* pbtRx, size_t* pszRxLen) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; byte_t abtCmd[sizeof(pncmd_initiator_exchange_data)]; memcpy(abtCmd,pncmd_initiator_exchange_data,sizeof(pncmd_initiator_exchange_data)); // We can not just send bytes without parity if while the PN53X expects we handled them if (!pdi->bPar) return false; // Copy the data into the command frame abtCmd[2] = 1; /* target number */ memcpy(abtCmd+3,pbtTx,szTxLen); // To transfer command frames bytes we can not have any leading bits, reset this to zero if (!pn53x_set_tx_bits(pdi,0)) return false; // Send the frame to the PN53X chip and get the answer // We have to give the amount of bytes + (the two command bytes 0xD4, 0x42) if (!pn53x_transceive(pdi,abtCmd,szTxLen+3,abtRx,&szRxLen)) return false; // Save the received byte count *pszRxLen = szRxLen-1; // Copy the received bytes memcpy(pbtRx,abtRx+1,*pszRxLen); // Everything went successful return true; } bool nfc_initiator_transceive_bytes(const dev_info* pdi, const byte_t* pbtTx, const size_t szTxLen, byte_t* pbtRx, size_t* pszRxLen) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; byte_t abtCmd[sizeof(pncmd_initiator_exchange_raw_data)]; memcpy(abtCmd,pncmd_initiator_exchange_raw_data,sizeof(pncmd_initiator_exchange_raw_data)); // We can not just send bytes without parity if while the PN53X expects we handled them if (!pdi->bPar) return false; // Copy the data into the command frame memcpy(abtCmd+2,pbtTx,szTxLen); // To transfer command frames bytes we can not have any leading bits, reset this to zero if (!pn53x_set_tx_bits(pdi,0)) return false; // Send the frame to the PN53X chip and get the answer // We have to give the amount of bytes + (the two command bytes 0xD4, 0x42) if (!pn53x_transceive(pdi,abtCmd,szTxLen+2,abtRx,&szRxLen)) return false; // Save the received byte count *pszRxLen = szRxLen-1; // Copy the received bytes memcpy(pbtRx,abtRx+1,*pszRxLen); // Everything went successful return true; } bool nfc_initiator_mifare_cmd(const dev_info* pdi, const mifare_cmd mc, const uint8_t ui8Block, mifare_param* pmp) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; size_t szParamLen; byte_t abtCmd[sizeof(pncmd_initiator_exchange_data)]; memcpy(abtCmd,pncmd_initiator_exchange_data,sizeof(pncmd_initiator_exchange_data)); // Make sure we are dealing with a active device if (!pdi->bActive) return false; abtCmd[2] = 0x01; // Use first target/card abtCmd[3] = mc; // The MIFARE Classic command abtCmd[4] = ui8Block; // The block address (1K=0x00..0x39, 4K=0x00..0xff) switch (mc) { // Read and store command have no parameter case MC_READ: case MC_STORE: szParamLen = 0; break; // Authenticate command case MC_AUTH_A: case MC_AUTH_B: szParamLen = sizeof(mifare_param_auth); break; // Data command case MC_WRITE: szParamLen = sizeof(mifare_param_data); break; // Value command case MC_DECREMENT: case MC_INCREMENT: case MC_TRANSFER: szParamLen = sizeof(mifare_param_value); break; // Please fix your code, you never should reach this statement default: return false; break; } // When available, copy the parameter bytes if (szParamLen) memcpy(abtCmd+5,(byte_t*)pmp,szParamLen); // Fire the mifare command if (!pn53x_transceive(pdi,abtCmd,5+szParamLen,abtRx,&szRxLen)) return false; // When we have executed a read command, copy the received bytes into the param if (mc == MC_READ && szRxLen == 17) memcpy(pmp->mpd.abtData,abtRx+1,16); // Command succesfully executed return true; } bool nfc_target_init(const dev_info* pdi, byte_t* pbtRx, size_t* pszRxBits) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; uint8_t ui8Bits; // Save the current configuration settings bool bCrc = pdi->bCrc; bool bPar = pdi->bPar; byte_t abtCmd[sizeof(pncmd_target_init)]; memcpy(abtCmd,pncmd_target_init,sizeof(pncmd_target_init)); // Clear the target init struct, reset to all zeros memset(abtCmd+2,0x00,37); // Set ATQA (SENS_RES) abtCmd[3] = 0x04; abtCmd[4] = 0x00; // Set SAK (SEL_RES) abtCmd[8] = 0x20; // Set UID abtCmd[5] = 0x00; abtCmd[6] = 0xb0; abtCmd[7] = 0x0b; // Make sure the CRC & parity are handled by the device, this is needed for target_init to work properly if (!bCrc) nfc_configure((dev_info*)pdi,DCO_HANDLE_CRC,true); if (!bPar) nfc_configure((dev_info*)pdi,DCO_HANDLE_CRC,true); // Let the PN53X be activated by the RF level detector from power down mode if (!pn53x_set_reg(pdi,REG_CIU_TX_AUTO, SYMBOL_INITIAL_RF_ON,0x04)) return false; // Request the initialization as a target, we can not use pn53x_transceive() because // abtRx[0] contains the emulation mode (baudrate, 14443-4?, DEP and framing type) szRxLen = MAX_FRAME_LEN; if (!pdi->pdc->transceive(pdi->ds,abtCmd,39,abtRx,&szRxLen)) return false; // Get the last bit-count that is stored in the received byte ui8Bits = pn53x_get_reg(pdi,REG_CIU_CONTROL) & SYMBOL_RX_LAST_BITS; // We are sure the parity is handled by the PN53X chip, so we handle it this way *pszRxBits = ((szRxLen-1-((ui8Bits==0)?0:1))*8)+ui8Bits; // Copy the received bytes memcpy(pbtRx,abtRx+1,szRxLen-1); // Restore the CRC & parity setting to the original value (if needed) if (!bCrc) nfc_configure((dev_info*)pdi,DCO_HANDLE_CRC,false); if (!bPar) nfc_configure((dev_info*)pdi,DCO_HANDLE_CRC,false); return true; } bool nfc_target_receive_bits(const dev_info* pdi, byte_t* pbtRx, size_t* pszRxBits, byte_t* pbtRxPar) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; size_t szFrameBits; uint8_t ui8Bits; // Try to gather a received frame from the reader if (!pn53x_transceive(pdi,pncmd_target_receive,2,abtRx,&szRxLen)) return false; // Get the last bit-count that is stored in the received byte ui8Bits = pn53x_get_reg(pdi,REG_CIU_CONTROL) & SYMBOL_RX_LAST_BITS; // Recover the real frame length in bits szFrameBits = ((szRxLen-1-((ui8Bits==0)?0:1))*8)+ui8Bits; // Ignore the status byte from the PN53X here, it was checked earlier in pn53x_transceive() // Check if we should recover the parity bits ourself if (!pdi->bPar) { // Unwrap the response frame pn53x_unwrap_frame(abtRx+1,szFrameBits,pbtRx,pszRxBits,pbtRxPar); } else { // Save the received bits *pszRxBits = szFrameBits; // Copy the received bytes memcpy(pbtRx,abtRx+1,szRxLen-1); } // Everyting seems ok, return true return true; } bool nfc_target_receive_dep_bytes(const dev_info* pdi, byte_t* pbtRx, size_t* pszRxLen) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; // Try to gather a received frame from the reader if (!pn53x_transceive(pdi,pncmd_target_get_data,2,abtRx,&szRxLen)) return false; // Save the received byte count *pszRxLen = szRxLen-1; // Copy the received bytes memcpy(pbtRx,abtRx+1,*pszRxLen); // Everyting seems ok, return true return true; } bool nfc_target_receive_bytes(const dev_info* pdi, byte_t* pbtRx, size_t* pszRxLen) { byte_t abtRx[MAX_FRAME_LEN]; size_t szRxLen; // Try to gather a received frame from the reader if (!pn53x_transceive(pdi,pncmd_target_receive,2,abtRx,&szRxLen)) return false; // Save the received byte count *pszRxLen = szRxLen-1; // Copy the received bytes memcpy(pbtRx,abtRx+1,*pszRxLen); // Everyting seems ok, return true return true; } bool nfc_target_send_bits(const dev_info* pdi, const byte_t* pbtTx, const size_t szTxBits, const byte_t* pbtTxPar) { size_t szFrameBits = 0; size_t szFrameBytes = 0; uint8_t ui8Bits = 0; byte_t abtCmd[sizeof(pncmd_target_send)]; memcpy(abtCmd,pncmd_target_send,sizeof(pncmd_target_send)); // Check if we should prepare the parity bits ourself if (!pdi->bPar) { // Convert data with parity to a frame pn53x_wrap_frame(pbtTx,szTxBits,pbtTxPar,abtCmd+2,&szFrameBits); } else { szFrameBits = szTxBits; } // Retrieve the leading bits ui8Bits = szFrameBits%8; // Get the amount of frame bytes + optional (1 byte if there are leading bits) szFrameBytes = (szFrameBits/8)+((ui8Bits==0)?0:1); // When the parity is handled before us, we just copy the data if (pdi->bPar) memcpy(abtCmd+2,pbtTx,szFrameBytes); // Set the amount of transmission bits in the PN53X chip register if (!pn53x_set_tx_bits(pdi,ui8Bits)) return false; // Try to send the bits to the reader if (!pn53x_transceive(pdi,abtCmd,szFrameBytes+2,NULL,NULL)) return false; // Everyting seems ok, return true return true; } bool nfc_target_send_bytes(const dev_info* pdi, const byte_t* pbtTx, const size_t szTxLen) { byte_t abtCmd[sizeof(pncmd_target_send)]; memcpy(abtCmd,pncmd_target_send,sizeof(pncmd_target_send)); // We can not just send bytes without parity if while the PN53X expects we handled them if (!pdi->bPar) return false; // Copy the data into the command frame memcpy(abtCmd+2,pbtTx,szTxLen); // Try to send the bits to the reader if (!pn53x_transceive(pdi,abtCmd,szTxLen+2,NULL,NULL)) return false; // Everyting seems ok, return true return true; } bool nfc_target_send_dep_bytes(const dev_info* pdi, const byte_t* pbtTx, const size_t szTxLen) { byte_t abtCmd[sizeof(pncmd_target_set_data)]; memcpy(abtCmd,pncmd_target_set_data,sizeof(pncmd_target_set_data)); // We can not just send bytes without parity if while the PN53X expects we handled them if (!pdi->bPar) return false; // Copy the data into the command frame memcpy(abtCmd+2,pbtTx,szTxLen); // Try to send the bits to the reader if (!pn53x_transceive(pdi,abtCmd,szTxLen+2,NULL,NULL)) return false; // Everyting seems ok, return true return true; }