libnfc/utils/nfc-mfultralight.c
Philippe Teuwen 024fca9cb7 make style
2017-04-01 00:46:12 +02:00

700 lines
19 KiB
C

/*-
* Free/Libre Near Field Communication (NFC) library
*
* Libnfc historical contributors:
* Copyright (C) 2009 Roel Verdult
* Copyright (C) 2009-2013 Romuald Conty
* Copyright (C) 2010-2012 Romain Tartière
* Copyright (C) 2010-2017 Philippe Teuwen
* Copyright (C) 2012-2013 Ludovic Rousseau
* See AUTHORS file for a more comprehensive list of contributors.
* Additional contributors of this file:
* Copyright (C) 2013-2017 Adam Laurie
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2 )Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Note that this license only applies on the examples, NFC library itself is under LGPL
*
*/
/**
* @file nfc-mfultralight.c
* @brief MIFARE Ultralight dump/restore tool
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif // HAVE_CONFIG_H
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>
#include <nfc/nfc.h>
#include "nfc-utils.h"
#include "mifare.h"
#define MAX_TARGET_COUNT 16
#define MAX_UID_LEN 10
#define EV1_NONE 0
#define EV1_UL11 1
#define EV1_UL21 2
static nfc_device *pnd;
static nfc_target nt;
static mifare_param mp;
static mifareul_ev1_mf0ul21_tag mtDump; // use the largest tag type for internal storage
static uint32_t uiBlocks = 0x10;
static uint32_t uiReadPages = 0;
static uint8_t iPWD[4] = { 0x0 };
static uint8_t iPACK[2] = { 0x0 };
static uint8_t iEV1Type = EV1_NONE;
// special unlock command
uint8_t abtUnlock1[1] = { 0x40 };
uint8_t abtUnlock2[1] = { 0x43 };
// EV1 commands
uint8_t abtEV1[3] = { 0x60, 0x00, 0x00 };
uint8_t abtPWAuth[7] = { 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
//Halt command
uint8_t abtHalt[4] = { 0x50, 0x00, 0x00, 0x00 };
#define MAX_FRAME_LEN 264
static uint8_t abtRx[MAX_FRAME_LEN];
static int szRxBits;
static int szRx;
static const nfc_modulation nmMifare = {
.nmt = NMT_ISO14443A,
.nbr = NBR_106,
};
static void
print_success_or_failure(bool bFailure, uint32_t *uiOkCounter, uint32_t *uiFailedCounter)
{
printf("%c", (bFailure) ? 'f' : '.');
if (uiOkCounter)
*uiOkCounter += (bFailure) ? 0 : 1;
if (uiFailedCounter)
*uiFailedCounter += (bFailure) ? 1 : 0;
}
static bool
read_card(void)
{
uint32_t page;
bool bFailure = false;
uint32_t uiFailedPages = 0;
printf("Reading %d pages |", uiBlocks);
for (page = 0; page < uiBlocks; page += 4) {
// Try to read out the data block
if (nfc_initiator_mifare_cmd(pnd, MC_READ, page, &mp)) {
memcpy(mtDump.amb[page / 4].mbd.abtData, mp.mpd.abtData, uiBlocks - page < 4 ? (uiBlocks - page) * 4 : 16);
} else {
bFailure = true;
}
for (uint8_t i = 0; i < (uiBlocks - page < 4 ? uiBlocks - page : 4); i++) {
print_success_or_failure(bFailure, &uiReadPages, &uiFailedPages);
}
}
printf("|\n");
printf("Done, %d of %d pages read (%d pages failed).\n", uiReadPages, uiBlocks, uiFailedPages);
fflush(stdout);
// copy EV1 secrets to dump data
switch (iEV1Type) {
case EV1_UL11:
memcpy(mtDump.amb[4].mbc11.pwd, iPWD, 4);
memcpy(mtDump.amb[4].mbc11.pack, iPACK, 2);
break;
case EV1_UL21:
memcpy(mtDump.amb[9].mbc21a.pwd, iPWD, 4);
memcpy(mtDump.amb[9].mbc21b.pack, iPACK, 2);
break;
case EV1_NONE:
default:
break;
}
return (!bFailure);
}
static bool
transmit_bits(const uint8_t *pbtTx, const size_t szTxBits)
{
// Transmit the bit frame command, we don't use the arbitrary parity feature
if ((szRxBits = nfc_initiator_transceive_bits(pnd, pbtTx, szTxBits, NULL, abtRx, sizeof(abtRx), NULL)) < 0)
return false;
return true;
}
static bool
transmit_bytes(const uint8_t *pbtTx, const size_t szTx)
{
if ((szRx = nfc_initiator_transceive_bytes(pnd, pbtTx, szTx, abtRx, sizeof(abtRx), 0)) < 0)
return false;
return true;
}
static bool
raw_mode_start(void)
{
// Configure the CRC
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return false;
}
// Use raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return false;
}
return true;
}
static bool
raw_mode_end(void)
{
// reset reader
// Configure the CRC
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
return false;
}
// Switch off raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
return false;
}
return true;
}
static bool
get_ev1_version(void)
{
if (!raw_mode_start())
return false;
iso14443a_crc_append(abtEV1, 1);
if (!transmit_bytes(abtEV1, 3)) {
raw_mode_end();
return false;
}
if (!raw_mode_end())
return false;
if (!szRx)
return false;
return true;
}
static bool
ev1_load_pwd(uint8_t target[4], const char *pwd)
{
if (sscanf(pwd, "%2x%2x%2x%2x", (unsigned int *) &target[0], (unsigned int *) &target[1], (unsigned int *) &target[2], (unsigned int *) &target[3]) != 4)
return false;
return true;
}
static bool
ev1_pwd_auth(uint8_t *pwd)
{
if (!raw_mode_start())
return false;
memcpy(&abtPWAuth[1], pwd, 4);
iso14443a_crc_append(abtPWAuth, 5);
if (!transmit_bytes(abtPWAuth, 7))
return false;
if (!raw_mode_end())
return false;
return true;
}
static bool
unlock_card(void)
{
if (!raw_mode_start())
return false;
iso14443a_crc_append(abtHalt, 2);
transmit_bytes(abtHalt, 4);
// now send unlock
if (!transmit_bits(abtUnlock1, 7)) {
return false;
}
if (!transmit_bytes(abtUnlock2, 1)) {
return false;
}
if (!raw_mode_end())
return false;
return true;
}
static bool check_magic()
{
bool bFailure = false;
int uid_data;
for (uint32_t page = 0; page <= 1; page++) {
// Show if the readout went well
if (bFailure) {
// When a failure occured we need to redo the anti-collision
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
ERR("tag was removed");
return false;
}
bFailure = false;
}
uid_data = 0x00000000;
memcpy(mp.mpd.abtData, &uid_data, sizeof uid_data);
memset(mp.mpd.abtData + 4, 0, 12);
//Force the write without checking for errors - otherwise the writes to the sector 0 seem to complain
nfc_initiator_mifare_cmd(pnd, MC_WRITE, page, &mp);
}
//Check that the ID is now set to 0x000000000000
if (nfc_initiator_mifare_cmd(pnd, MC_READ, 0, &mp)) {
//printf("%u", mp.mpd.abtData);
bool result = true;
for (int i = 0; i <= 7; i++) {
if (mp.mpd.abtData[i] != 0x00) result = false;
}
if (result) {
return true;
}
}
//Initially check if we can unlock via the MF method
if (unlock_card()) {
return true;
} else {
return false;
}
}
static bool
write_card(bool write_otp, bool write_lock, bool write_uid)
{
uint32_t uiBlock = 0;
bool bFailure = false;
uint32_t uiWrittenPages = 0;
uint32_t uiSkippedPages = 0;
uint32_t uiFailedPages = 0;
char buffer[BUFSIZ];
if (!write_otp) {
printf("Write OTP bytes ? [yN] ");
if (!fgets(buffer, BUFSIZ, stdin)) {
ERR("Unable to read standard input.");
}
write_otp = ((buffer[0] == 'y') || (buffer[0] == 'Y'));
}
if (!write_lock) {
printf("Write Lock bytes ? [yN] ");
if (!fgets(buffer, BUFSIZ, stdin)) {
ERR("Unable to read standard input.");
}
write_lock = ((buffer[0] == 'y') || (buffer[0] == 'Y'));
}
if (!write_uid) {
printf("Write UID bytes (only for special writeable UID cards) ? [yN] ");
if (!fgets(buffer, BUFSIZ, stdin)) {
ERR("Unable to read standard input.");
}
write_uid = ((buffer[0] == 'y') || (buffer[0] == 'Y'));
}
printf("Writing %d pages |", uiBlocks);
/* We may need to skip 2 first pages. */
if (!write_uid) {
printf("ss");
uiSkippedPages = 2;
} else {
if (!check_magic()) {
printf("\nUnable to unlock card - are you sure the card is magic?\n");
return false;
}
}
for (uint32_t page = uiSkippedPages; page < uiBlocks; page++) {
if ((page == 0x2) && (!write_lock)) {
printf("s");
uiSkippedPages++;
continue;
}
if ((page == 0x3) && (!write_otp)) {
printf("s");
uiSkippedPages++;
continue;
}
// Check if the previous readout went well
if (bFailure) {
// When a failure occured we need to redo the anti-collision
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
ERR("tag was removed");
return false;
}
bFailure = false;
}
// For the Mifare Ultralight, this write command can be used
// in compatibility mode, which only actually writes the first
// page (4 bytes). The Ultralight-specific Write command only
// writes one page at a time.
uiBlock = page / 4;
memcpy(mp.mpd.abtData, mtDump.amb[uiBlock].mbd.abtData + ((page % 4) * 4), 4);
memset(mp.mpd.abtData + 4, 0, 12);
if (!nfc_initiator_mifare_cmd(pnd, MC_WRITE, page, &mp))
bFailure = true;
print_success_or_failure(bFailure, &uiWrittenPages, &uiFailedPages);
}
printf("|\n");
printf("Done, %d of %d pages written (%d pages skipped, %d pages failed).\n", uiWrittenPages, uiBlocks, uiSkippedPages, uiFailedPages);
return true;
}
static int list_passive_targets(nfc_device *_pnd)
{
int res = 0;
nfc_target ant[MAX_TARGET_COUNT];
if (nfc_initiator_init(_pnd) < 0) {
return -EXIT_FAILURE;
}
if ((res = nfc_initiator_list_passive_targets(_pnd, nmMifare, ant, MAX_TARGET_COUNT)) >= 0) {
int i;
if (res > 0)
printf("%d ISO14443A passive target(s) found:\n", res);
for (i = 0; i < res; i++) {
size_t szPos;
printf("\t");
for (szPos = 0; szPos < ant[i].nti.nai.szUidLen; szPos++) {
printf("%02x", ant[i].nti.nai.abtUid[szPos]);
}
printf("\n");
}
}
return 0;
}
static size_t str_to_uid(const char *str, uint8_t *uid)
{
uint8_t i;
memset(uid, 0x0, MAX_UID_LEN);
i = 0;
while ((*str != '\0') && ((i >> 1) < MAX_UID_LEN)) {
char nibble[2] = { 0x00, '\n' }; /* for strtol */
nibble[0] = *str++;
if (isxdigit(nibble[0])) {
if (isupper(nibble[0]))
nibble[0] = tolower(nibble[0]);
uid[i >> 1] |= strtol(nibble, NULL, 16) << ((i % 2) ? 0 : 4) & ((i % 2) ? 0x0f : 0xf0);
i++;
}
}
return i >> 1;
}
static void
print_usage(const char *argv[])
{
printf("Usage: %s r|w <dump.mfd> [OPTIONS]\n", argv[0]);
printf("Arguments:\n");
printf("\tr|w - Perform read or write\n");
printf("\t<dump.mfd> - MiFare Dump (MFD) used to write (card to MFD) or (MFD to card)\n");
printf("Options:\n");
printf("\t--otp - Don't prompt for OTP writing (Assume yes)\n");
printf("\t--lock - Don't prompt for Lockbit writing (Assume yes)\n");
printf("\t--uid - Don't prompt for UID writing (Assume yes)\n");
printf("\t--full - Assume full card write (UID + OTP + Lockbit)\n");
printf("\t--with-uid <UID> - Specify UID to read/write from\n");
printf("\t--pw <PWD> - Specify 8 HEX digit PASSWORD for EV1\n");
printf("\t--partial - Allow source data size to be other than tag capacity\n");
}
int
main(int argc, const char *argv[])
{
int iAction = 0;
uint8_t iDumpSize = sizeof(mifareul_tag);
uint8_t iUID[MAX_UID_LEN] = { 0x0 };
size_t szUID = 0;
bool bOTP = false;
bool bLock = false;
bool bUID = false;
bool bPWD = false;
bool bPart = false;
bool bFilename = false;
FILE *pfDump;
if (argc < 3) {
print_usage(argv);
exit(EXIT_FAILURE);
}
DBG("\nChecking arguments and settings\n");
// Get commandline options
for (int arg = 1; arg < argc; arg++) {
if (0 == strcmp(argv[arg], "r")) {
iAction = 1;
} else if (0 == strcmp(argv[arg], "w")) {
iAction = 2;
} else if (0 == strcmp(argv[arg], "--with-uid")) {
if (arg + 1 == argc) {
ERR("Please supply a UID of 4, 7 or 10 bytes long. Ex: a1:b2:c3:d4");
exit(EXIT_FAILURE);
}
szUID = str_to_uid(argv[++arg], iUID);
} else if (0 == strcmp(argv[arg], "--full")) {
bOTP = true;
bLock = true;
bUID = true;
} else if (0 == strcmp(argv[arg], "--otp")) {
bOTP = true;
} else if (0 == strcmp(argv[arg], "--lock")) {
bLock = true;
} else if (0 == strcmp(argv[arg], "--uid")) {
bUID = true;
} else if (0 == strcmp(argv[arg], "--check-magic")) {
iAction = 3;
} else if (0 == strcmp(argv[arg], "--partial")) {
bPart = true;
} else if (0 == strcmp(argv[arg], "--pw")) {
bPWD = true;
if (arg + 1 == argc || strlen(argv[++arg]) != 8 || ! ev1_load_pwd(iPWD, argv[arg])) {
ERR("Please supply a PASSWORD of 8 HEX digits");
exit(EXIT_FAILURE);
}
} else {
//Skip validation of the filename
if (arg != 2) {
ERR("%s is not a supported option.", argv[arg]);
print_usage(argv);
exit(EXIT_FAILURE);
} else {
bFilename = true;
}
}
}
if (! bFilename) {
ERR("Please supply a Mifare Dump filename");
exit(EXIT_FAILURE);
}
nfc_context *context;
nfc_init(&context);
if (context == NULL) {
ERR("Unable to init libnfc (malloc)");
exit(EXIT_FAILURE);
}
// Try to open the NFC device
pnd = nfc_open(context, NULL);
if (pnd == NULL) {
ERR("Error opening NFC device");
nfc_exit(context);
exit(EXIT_FAILURE);
}
printf("NFC device: %s opened\n", nfc_device_get_name(pnd));
if (list_passive_targets(pnd)) {
nfc_perror(pnd, "nfc_device_set_property_bool");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
if (nfc_initiator_init(pnd) < 0) {
nfc_perror(pnd, "nfc_initiator_init");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Let the device only try once to find a tag
if (nfc_device_set_property_bool(pnd, NP_INFINITE_SELECT, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Try to find a MIFARE Ultralight tag
if (nfc_initiator_select_passive_target(pnd, nmMifare, (szUID) ? iUID : NULL, szUID, &nt) <= 0) {
ERR("no tag was found\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Test if we are dealing with a MIFARE compatible tag
if (nt.nti.nai.abtAtqa[1] != 0x44) {
ERR("tag is not a MIFARE Ultralight card\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Get the info from the current tag
printf("Using MIFARE Ultralight card with UID: ");
size_t szPos;
for (szPos = 0; szPos < nt.nti.nai.szUidLen; szPos++) {
printf("%02x", nt.nti.nai.abtUid[szPos]);
}
printf("\n");
// test if tag is EV1
if (get_ev1_version()) {
if (!bPWD)
printf("Tag is EV1 - PASSWORD may be required\n");
printf("EV1 storage size: ");
if (abtRx[6] == 0x0b) {
printf("48 bytes\n");
uiBlocks = 0x14;
iEV1Type = EV1_UL11;
iDumpSize = sizeof(mifareul_ev1_mf0ul11_tag);
} else if (abtRx[6] == 0x0e) {
printf("128 bytes\n");
uiBlocks = 0x29;
iEV1Type = EV1_UL21;
iDumpSize = sizeof(mifareul_ev1_mf0ul21_tag);
} else
printf("unknown!\n");
} else {
// re-init non EV1 tag
if (nfc_initiator_select_passive_target(pnd, nmMifare, (szUID) ? iUID : NULL, szUID, &nt) <= 0) {
ERR("no tag was found\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
}
// EV1 login required
if (bPWD) {
printf("Authing with PWD: %02x%02x%02x%02x ", iPWD[0], iPWD[1], iPWD[2], iPWD[3]);
if (!ev1_pwd_auth(iPWD)) {
printf("\n");
ERR("AUTH failed!\n");
exit(EXIT_FAILURE);
} else {
printf("Success - PACK: %02x%02x\n", abtRx[0], abtRx[1]);
memcpy(iPACK, abtRx, 2);
}
}
if (iAction == 1) {
memset(&mtDump, 0x00, sizeof(mtDump));
} else if (iAction == 2) {
pfDump = fopen(argv[2], "rb");
if (pfDump == NULL) {
ERR("Could not open dump file: %s\n", argv[2]);
exit(EXIT_FAILURE);
}
size_t szDump;
if (((szDump = fread(&mtDump, 1, sizeof(mtDump), pfDump)) != iDumpSize && !bPart) || szDump <= 0) {
ERR("Could not read from dump file or size mismatch: %s\n", argv[2]);
fclose(pfDump);
exit(EXIT_FAILURE);
}
if (szDump != iDumpSize)
printf("Performing partial write\n");
fclose(pfDump);
DBG("Successfully opened the dump file\n");
} else if (iAction == 3) {
DBG("Switching to Check Magic Mode\n");
} else {
ERR("Unable to determine operating mode");
exit(EXIT_FAILURE);
}
if (iAction == 1) {
bool bRF = read_card();
printf("Writing data to file: %s ... ", argv[2]);
fflush(stdout);
pfDump = fopen(argv[2], "wb");
if (pfDump == NULL) {
printf("Could not open file: %s\n", argv[2]);
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
if (fwrite(&mtDump, 1, uiReadPages * 4, pfDump) != uiReadPages * 4) {
printf("Could not write to file: %s\n", argv[2]);
fclose(pfDump);
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
fclose(pfDump);
printf("Done.\n");
if (!bRF)
printf("Warning! Read failed - partial data written to file!\n");
} else if (iAction == 2) {
write_card(bOTP, bLock, bUID);
} else if (iAction == 3) {
if (!check_magic()) {
printf("Card is not magic\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
} else {
printf("Card is magic\n");
}
}
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_SUCCESS);
}