libnfc/libnfc/nfc.c
2011-05-20 16:09:00 +00:00

815 lines
30 KiB
C

/*-
* Public platform independent Near Field Communication (NFC) library
*
* Copyright (C) 2009, Roel Verdult, Romuald Conty
* Copyright (C) 2010, Roel Verdult, Romuald Conty, Romain Tartière
* Copyright (C) 2011, Romuald Conty, Romain Tartière
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*/
/**
* @file nfc.c
* @brief NFC library implementation
*/
/* vim:set ts=2 sw=2 et: */
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif // HAVE_CONFIG_H
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <nfc/nfc.h>
#include "drivers.h"
#include "nfc-internal.h"
#include <sys/param.h>
nfc_device_desc_t *nfc_pick_device (void);
const struct nfc_driver_t *nfc_drivers[] = {
# if defined (DRIVER_PN53X_USB_ENABLED)
&pn53x_usb_driver,
# endif /* DRIVER_PN53X_USB_ENABLED */
# if defined (DRIVER_ACR122_ENABLED)
&acr122_driver,
# endif /* DRIVER_ACR122_ENABLED */
# if defined (DRIVER_PN532_UART_ENABLED)
&pn532_uart_driver,
# endif /* DRIVER_PN532_UART_ENABLED */
# if defined (DRIVER_ARYGON_ENABLED)
&arygon_driver,
# endif /* DRIVER_ARYGON_ENABLED */
NULL
};
/**
* @brief Connect to a NFC device
* @param pndd device description if specific device is wanted, \c NULL otherwise
* @return Returns pointer to a \a nfc_device_t struct if successfull; otherwise returns \c NULL value.
*
* If \e pndd is \c NULL, the first available NFC device is claimed.
* It will automatically search the system using all available drivers to determine a device is NFC-enabled.
*
* If \e pndd is passed then this function will try to claim the right device using information provided by the \a nfc_device_desc_t struct.
*
* When it has successfully claimed a NFC device, memory is allocated to save the device information. It will return a pointer to a \a nfc_device_t struct.
* This pointer should be supplied by every next functions of libnfc that should perform an action with this device.
*
* @note Depending on the desired operation mode, the device needs to be configured
* by using nfc_initiator_init() or nfc_target_init(), optionally followed by manual tuning of the parameters if the default parameters are not suiting your goals.
*/
nfc_device_t *
nfc_connect (nfc_device_desc_t * pndd)
{
nfc_device_t *pnd = NULL;
if (pndd == NULL)
pndd = nfc_pick_device ();
if (pndd == NULL)
return NULL;
// Search through the device list for an available device
const struct nfc_driver_t *ndr;
const struct nfc_driver_t **pndr = nfc_drivers;
while ((ndr = *pndr)) {
// Specific device is requested: using device description pndd
if (0 != strcmp (ndr->name, pndd->pcDriver)) {
pndr++;
continue;
} else {
pnd = ndr->connect (pndd);
}
// Test if the connection was successful
if (pnd != NULL) {
DBG ("[%s] has been claimed.", pnd->acName);
return pnd;
} else {
DBG ("No device found using driver: %s", ndr->name);
}
pndr++;
}
// Too bad, no reader is ready to be claimed
return NULL;
}
/**
* @brief Disconnect from a NFC device
* @param pnd \a nfc_device_t struct pointer that represent currently used device
*
* Initiator's selected tag is disconnected and the device, including allocated \a nfc_device_t struct, is released.
*/
void
nfc_disconnect (nfc_device_t * pnd)
{
if (pnd) {
// Go in idle mode
nfc_idle (pnd);
// Disconnect, clean up and release the device
pnd->driver->disconnect (pnd);
}
}
/**
* @brief Probe for the first discoverable supported devices (ie. only available for some drivers)
* @return \a nfc_device_desc_t struct pointer
*/
nfc_device_desc_t *
nfc_pick_device (void)
{
const struct nfc_driver_t *ndr;
const struct nfc_driver_t **pndr = nfc_drivers;
while ((ndr = *pndr)) {
nfc_device_desc_t *pndd;
if ((pndd = malloc (sizeof (*pndd)))) {
size_t szN;
if (!ndr->probe (pndd, 1, &szN)) {
DBG ("%s probe failed", ndr->name);
szN = 0;
}
if (szN == 0) {
DBG ("No %s device found", ndr->name);
free (pndd);
} else {
return pndd;
}
}
pndr++;
}
DBG ("%s", "No device found with any driver :-(");
return NULL;
}
/**
* @brief Probe for discoverable supported devices (ie. only available for some drivers)
* @param[out] pnddDevices array of \a nfc_device_desc_t previously allocated by the caller.
* @param szDevices size of the \a pnddDevices array.
* @param[out] pszDeviceFound number of devices found.
*/
void
nfc_list_devices (nfc_device_desc_t pnddDevices[], size_t szDevices, size_t * pszDeviceFound)
{
size_t szN;
*pszDeviceFound = 0;
const struct nfc_driver_t *ndr;
const struct nfc_driver_t **pndr = nfc_drivers;
while ((ndr = *pndr)) {
szN = 0;
if (ndr->probe (pnddDevices + (*pszDeviceFound), szDevices - (*pszDeviceFound), &szN)) {
*pszDeviceFound += szN;
DBG ("%ld device(s) found using %s driver", (unsigned long) szN, ndr->name);
}
pndr++;
}
}
/**
* @brief Configure advanced NFC device settings
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param ndo \a nfc_device_option_t struct that contains option to set to device
* @param bEnable boolean to activate/disactivate the option
*
* Configures parameters and registers that control for example timing,
* modulation, frame and error handling. There are different categories for
* configuring the \e PN53X chip features (handle, activate, infinite and
* accept).
*/
bool
nfc_configure (nfc_device_t * pnd, const nfc_device_option_t ndo, const bool bEnable)
{
HAL (configure, pnd, ndo, bEnable);
}
/**
* @brief Initialize NFC device as initiator (reader)
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
* @param pnd \a nfc_device_t struct pointer that represent currently used device
*
* The NFC device is configured to function as RFID reader.
* After initialization it can be used to communicate to passive RFID tags and active NFC devices.
* The reader will act as initiator to communicate peer 2 peer (NFCIP) to other active NFC devices.
* - Crc is handled by the device (NDO_HANDLE_CRC = true)
* - Parity is handled the device (NDO_HANDLE_PARITY = true)
* - Cryto1 cipher is disabled (NDO_ACTIVATE_CRYPTO1 = false)
* - Easy framing is enabled (NDO_EASY_FRAMING = true)
* - Auto-switching in ISO14443-4 mode is enabled (NDO_AUTO_ISO14443_4 = true)
* - Invalid frames are not accepted (NDO_ACCEPT_INVALID_FRAMES = false)
* - Multiple frames are not accepted (NDO_ACCEPT_MULTIPLE_FRAMES = false)
* - 14443-A mode is activated (NDO_FORCE_ISO14443_A = true)
* - speed is set to 106 kbps (NDO_FORCE_SPEED_106 = true)
* - Let the device try forever to find a target (NDO_INFINITE_SELECT = true)
* - RF field is shortly dropped (if it was enabled) then activated again
*/
bool
nfc_initiator_init (nfc_device_t * pnd)
{
// Drop the field for a while
if (!nfc_configure (pnd, NDO_ACTIVATE_FIELD, false))
return false;
// Enable field so more power consuming cards can power themselves up
if (!nfc_configure (pnd, NDO_ACTIVATE_FIELD, true))
return false;
// Let the device try forever to find a target/tag
if (!nfc_configure (pnd, NDO_INFINITE_SELECT, true))
return false;
// Activate auto ISO14443-4 switching by default
if (!nfc_configure (pnd, NDO_AUTO_ISO14443_4, true))
return false;
// Force 14443-A mode
if (!nfc_configure (pnd, NDO_FORCE_ISO14443_A, true))
return false;
// Force speed at 106kbps
if (!nfc_configure (pnd, NDO_FORCE_SPEED_106, true))
return false;
// Disallow invalid frame
if (!nfc_configure (pnd, NDO_ACCEPT_INVALID_FRAMES, false))
return false;
// Disallow multiple frames
if (!nfc_configure (pnd, NDO_ACCEPT_MULTIPLE_FRAMES, false))
return false;
// Make sure we reset the CRC and parity to chip handling.
if (!nfc_configure (pnd, NDO_HANDLE_CRC, true))
return false;
if (!nfc_configure (pnd, NDO_HANDLE_PARITY, true))
return false;
// Activate "easy framing" feature by default
if (!nfc_configure (pnd, NDO_EASY_FRAMING, true))
return false;
// Deactivate the CRYPTO1 cipher, it may could cause problems when still active
if (!nfc_configure (pnd, NDO_ACTIVATE_CRYPTO1, false))
return false;
HAL (initiator_init, pnd);
}
/**
* @brief Select a passive or emulated tag
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param nm desired modulation
* @param pbtInitData optional initiator data used for Felica, ISO14443B, Topaz polling or to select a specific UID in ISO14443A.
* @param szInitData length of initiator data \a pbtInitData.
* @note pbtInitData is used with different kind of data depending on modulation type:
* - for an ISO/IEC 14443 type A modulation, pbbInitData contains the UID you want to select;
* - for an ISO/IEC 14443 type B modulation, pbbInitData contains Application Family Identifier (AFI) (see ISO/IEC 14443-3);
* - for a FeliCa modulation, pbbInitData contains polling payload (see ISO/IEC 18092 11.2.2.5).
*
* @param[out] pnt \a nfc_target_t struct pointer which will filled if available
*
* The NFC device will try to find one available passive tag or emulated tag.
*
* The chip needs to know with what kind of tag it is dealing with, therefore
* the initial modulation and speed (106, 212 or 424 kbps) should be supplied.
*/
bool
nfc_initiator_select_passive_target (nfc_device_t * pnd,
const nfc_modulation_t nm,
const byte_t * pbtInitData, const size_t szInitData,
nfc_target_t * pnt)
{
byte_t abtInit[MAX(12, szInitData)];
size_t szInit;
// TODO Put this in a function: this part is defined by ISO14443-3 (UID and Cascade levels)
switch (nm.nmt) {
case NMT_ISO14443A:
switch (szInitData) {
case 7:
abtInit[0] = 0x88;
memcpy (abtInit + 1, pbtInitData, 7);
szInit = 8;
break;
case 10:
abtInit[0] = 0x88;
memcpy (abtInit + 1, pbtInitData, 3);
abtInit[4] = 0x88;
memcpy (abtInit + 5, pbtInitData + 3, 7);
szInit = 12;
break;
case 4:
default:
memcpy (abtInit, pbtInitData, szInitData);
szInit = szInitData;
break;
}
break;
default:
memcpy (abtInit, pbtInitData, szInitData);
szInit = szInitData;
break;
}
HAL (initiator_select_passive_target, pnd, nm, abtInit, szInit, pnt);
}
/**
* @brief List passive or emulated tags
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param nm desired modulation
* @param[out] ant array of \a nfc_target_t that will be filled with targets info
* @param szTargets size of \a ant (will be the max targets listed)
* @param[out] pszTargetFound pointer where target found counter will be stored
*
* The NFC device will try to find the available passive tags. Some NFC devices
* are capable to emulate passive tags. The standards (ISO18092 and ECMA-340)
* describe the modulation that can be used for reader to passive
* communications. The chip needs to know with what kind of tag it is dealing
* with, therefore the initial modulation and speed (106, 212 or 424 kbps)
* should be supplied.
*/
bool
nfc_initiator_list_passive_targets (nfc_device_t * pnd,
const nfc_modulation_t nm,
nfc_target_t ant[], const size_t szTargets, size_t * pszTargetFound)
{
nfc_target_t nt;
size_t szTargetFound = 0;
byte_t *pbtInitData = NULL;
size_t szInitDataLen = 0;
pnd->iLastError = 0;
// Let the reader only try once to find a tag
if (!nfc_configure (pnd, NDO_INFINITE_SELECT, false)) {
return false;
}
switch (nm.nmt) {
case NMT_ISO14443B: {
// Application Family Identifier (AFI) must equals 0x00 in order to wakeup all ISO14443-B PICCs (see ISO/IEC 14443-3)
pbtInitData = (byte_t *) "\x00";
szInitDataLen = 1;
}
break;
case NMT_ISO14443BI: {
// APGEN
pbtInitData = (byte_t *) "\x01\x0b\x3f\x80";
szInitDataLen = 4;
}
break;
case NMT_ISO14443B2SR: {
// Get_UID
pbtInitData = (byte_t *) "\x0b";
szInitDataLen = 1;
}
break;
case NMT_ISO14443B2CT: {
// SELECT-ALL
pbtInitData = (byte_t *) "\x9F\xFF\xFF";
szInitDataLen = 3;
}
break;
case NMT_FELICA: {
// polling payload must be present (see ISO/IEC 18092 11.2.2.5)
pbtInitData = (byte_t *) "\x00\xff\xff\x01\x00";
szInitDataLen = 5;
}
break;
default:
// nothing to do
break;
}
while (nfc_initiator_select_passive_target (pnd, nm, pbtInitData, szInitDataLen, &nt)) {
nfc_initiator_deselect_target (pnd);
if (szTargets > szTargetFound) {
memcpy (&(ant[szTargetFound]), &nt, sizeof (nfc_target_t));
} else {
break;
}
szTargetFound++;
// deselect has no effect on FeliCa and Jewel cards so we'll stop after one...
// ISO/IEC 14443 B' cards are polled at 100% probability so it's not possible to detect correctly two cards at the same time
if ((nm.nmt == NMT_FELICA) || (nm.nmt == NMT_JEWEL) || (nm.nmt == NMT_ISO14443BI) || (nm.nmt == NMT_ISO14443B2SR) || (nm.nmt == NMT_ISO14443B2CT)) {
break;
}
}
*pszTargetFound = szTargetFound;
return true;
}
/**
* @brief Polling for NFC targets
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param ppttTargetTypes array of desired target types
* @param szTargetTypes \e ppttTargetTypes count
* @param btPollNr specifies the number of polling
* @note one polling is a polling for each desired target type
* @param btPeriod indicates the polling period in units of 150 ms
* @param[out] pntTargets pointer on array of 2 \a nfc_target_t (over)writables struct
* @param[out] pszTargetFound found targets count
*/
bool
nfc_initiator_poll_targets (nfc_device_t * pnd,
const nfc_modulation_t * pnmModulations, const size_t szModulations,
const byte_t btPollNr, const byte_t btPeriod,
nfc_target_t * pntTargets, size_t * pszTargetFound)
{
HAL (initiator_poll_targets, pnd, pnmModulations, szModulations, btPollNr, btPeriod, pntTargets, pszTargetFound);
}
/**
* @brief Select a target and request active or passive mode for D.E.P. (Data Exchange Protocol)
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param ndm desired D.E.P. mode (\a NDM_ACTIVE or \a NDM_PASSIVE for active, respectively passive mode)
* @param ndiInitiator pointer \a nfc_dep_info_t struct that contains \e NFCID3 and \e General \e Bytes to set to the initiator device (optionnal, can be \e NULL)
* @param[out] pnt is a \a nfc_target_t struct pointer where target information will be put.
*
* The NFC device will try to find an available D.E.P. target. The standards
* (ISO18092 and ECMA-340) describe the modulation that can be used for reader
* to passive communications.
*
* @note \a nfc_dep_info_t will be returned when the target was acquired successfully.
*/
bool
nfc_initiator_select_dep_target (nfc_device_t * pnd,
const nfc_dep_mode_t ndm, const nfc_baud_rate_t nbr,
const nfc_dep_info_t * pndiInitiator, nfc_target_t * pnt)
{
HAL (initiator_select_dep_target, pnd, ndm, nbr, pndiInitiator, pnt);
}
/**
* @brief Deselect a selected passive or emulated tag
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
* @param pnd \a nfc_device_t struct pointer that represents currently used device
*
* After selecting and communicating with a passive tag, this function could be
* used to deactivate and release the tag. This is very useful when there are
* multiple tags available in the field. It is possible to use the \fn
* nfc_initiator_select_passive_target() function to select the first available
* tag, test it for the available features and support, deselect it and skip to
* the next tag until the correct tag is found.
*/
bool
nfc_initiator_deselect_target (nfc_device_t * pnd)
{
HAL (initiator_deselect_target, pnd);
}
/**
* @brief Send data to target then retrieve data from target
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* The NFC device (configured as initiator) will transmit the supplied bytes (\a pbtTx) to the target.
* It waits for the response and stores the received bytes in the \a pbtRx byte array.
*
* If \a NDO_EASY_FRAMING option is disabled the frames will sent and received in raw mode: \e PN53x will not handle input neither output data.
*
* The parity bits are handled by the \e PN53x chip. The CRC can be generated automatically or handled manually.
* Using this function, frames can be communicated very fast via the NFC initiator to the tag.
*
* Tests show that on average this way of communicating is much faster than using the regular driver/middle-ware (often supplied by manufacturers).
*
* @warning The configuration option \a NDO_HANDLE_PARITY must be set to \c true (the default value).
*/
bool
nfc_initiator_transceive_bytes (nfc_device_t * pnd, const byte_t * pbtTx, const size_t szTx, byte_t * pbtRx,
size_t * pszRx)
{
HAL (initiator_transceive_bytes, pnd, pbtTx, szTx, pbtRx, pszRx)
}
/**
* @brief Transceive raw bit-frames to a target
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pbtTx contains a byte array of the frame that needs to be transmitted.
* @param szTxBits contains the length in bits.
*
* @note For example the REQA (0x26) command (first anti-collision command of
* ISO14443-A) must be precise 7 bits long. This is not possible by using
* nfc_initiator_transceive_bytes(). With that function you can only
* communicate frames that consist of full bytes. When you send a full byte (8
* bits + 1 parity) with the value of REQA (0x26), a tag will simply not
* respond. More information about this can be found in the anti-collision
* example (\e nfc-anticol).
*
* @param pbtTxPar parameter contains a byte array of the corresponding parity bits needed to send per byte.
*
* @note For example if you send the SELECT_ALL (0x93, 0x20) = [ 10010011,
* 00100000 ] command, you have to supply the following parity bytes (0x01,
* 0x00) to define the correct odd parity bits. This is only an example to
* explain how it works, if you just are sending two bytes with ISO14443-A
* compliant parity bits you better can use the
* nfc_initiator_transceive_bytes() function.
*
* @param[out] pbtRx response from the tag
* @param[out] pszRxBits \a pbtRx length in bits
* @param[out] pbtRxPar parameter contains a byte array of the corresponding parity bits
*
* The NFC device (configured as \e initiator) will transmit low-level messages
* where only the modulation is handled by the \e PN53x chip. Construction of
* the frame (data, CRC and parity) is completely done by libnfc. This can be
* very useful for testing purposes. Some protocols (e.g. MIFARE Classic)
* require to violate the ISO14443-A standard by sending incorrect parity and
* CRC bytes. Using this feature you are able to simulate these frames.
*/
bool
nfc_initiator_transceive_bits (nfc_device_t * pnd, const byte_t * pbtTx, const size_t szTxBits, const byte_t * pbtTxPar,
byte_t * pbtRx, size_t * pszRxBits, byte_t * pbtRxPar)
{
HAL (initiator_transceive_bits, pnd, pbtTx, szTxBits, pbtTxPar, pbtRx, pszRxBits, pbtRxPar);
}
/**
* @brief Send data to target then retrieve data from target
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* This function is similar to nfc_initiator_transceive_bytes() with the following differences:
* - A precise cycles counter will indicate the number of cycles between emission & reception of frames.
* - It only supports mode with \a NDO_EASY_FRAMING option disabled.
* - Overall communication with the host is heavier and slower.
*
* Timer control:
* By default timer configuration tries to maximize the precision, which also limits the maximum
* cycles count before saturation/timeout.
* E.g. with PN53x it can count up to 65535 cycles, so about 4.8ms, with a precision of about 73ns.
* - If you're ok with the defaults, set *cycles = 0 before calling this function.
* - If you need to count more cycles, set *cycles to the maximum you expect but don't forget
* you'll loose in precision and it'll take more time before timeout, so don't abuse!
*
* @warning The configuration option \a NDO_EASY_FRAMING must be set to \c false.
* @warning The configuration option \a NDO_HANDLE_PARITY must be set to \c true (the default value).
*/
bool
nfc_initiator_transceive_bytes_timed (nfc_device_t * pnd, const byte_t * pbtTx, const size_t szTx, byte_t * pbtRx,
size_t * pszRx, uint32_t * cycles)
{
HAL (initiator_transceive_bytes_timed, pnd, pbtTx, szTx, pbtRx, pszRx, cycles)
}
/**
* @brief Transceive raw bit-frames to a target
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* This function is similar to nfc_initiator_transceive_bits() with the following differences:
* - A precise cycles counter will indicate the number of cycles between emission & reception of frames.
* - It only supports mode with \a NDO_EASY_FRAMING option disabled and CRC must be handled manually.
* - Overall communication with the host is heavier and slower.
*
* Timer control:
* By default timer configuration tries to maximize the precision, which also limits the maximum
* cycles count before saturation/timeout.
* E.g. with PN53x it can count up to 65535 cycles, so about 4.8ms, with a precision of about 73ns.
* - If you're ok with the defaults, set *cycles = 0 before calling this function.
* - If you need to count more cycles, set *cycles to the maximum you expect but don't forget
* you'll loose in precision and it'll take more time before timeout, so don't abuse!
*
* @warning The configuration option \a NDO_EASY_FRAMING must be set to \c false.
* @warning The configuration option \a NDO_HANDLE_CRC must be set to \c false.
* @warning The configuration option \a NDO_HANDLE_PARITY must be set to \c true (the default value).
*/
bool
nfc_initiator_transceive_bits_timed (nfc_device_t * pnd, const byte_t * pbtTx, const size_t szTxBits, const byte_t * pbtTxPar,
byte_t * pbtRx, size_t * pszRxBits, byte_t * pbtRxPar, uint32_t * cycles)
{
HAL (initiator_transceive_bits_timed, pnd, pbtTx, szTxBits, pbtTxPar, pbtRx, pszRxBits, pbtRxPar, cycles);
}
/**
* @brief Initialize NFC device as an emulated tag
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param ntm target mode restriction that you want to emulate (eg. NTM_PASSIVE_ONLY)
* @param pnt pointer to \a nfc_target_t struct that represents the wanted emulated target
*
* @note \a pnt can be updated by this function: if you set NBR_UNDEFINED
* and/or NDM_UNDEFINED (ie. for DEP mode), these fields will be updated.
*
* @param[out] pbtRx Rx buffer pointer
* @param[out] pszRx received bytes count
*
* This function initializes NFC device in \e target mode in order to emulate a
* tag using the specified \a nfc_target_mode_t.
* - Crc is handled by the device (NDO_HANDLE_CRC = true)
* - Parity is handled the device (NDO_HANDLE_PARITY = true)
* - Cryto1 cipher is disabled (NDO_ACTIVATE_CRYPTO1 = false)
* - Easy framing is disabled (NDO_EASY_FRAMING = false)
* - Invalid frames are not accepted (NDO_ACCEPT_INVALID_FRAMES = false)
* - Multiple frames are not accepted (NDO_ACCEPT_MULTIPLE_FRAMES = false)
* - RF field is dropped
*
* @warning Be aware that this function will wait (hang) until a command is
* received that is not part of the anti-collision. The RATS command for
* example would wake up the emulator. After this is received, the send and
* receive functions can be used.
*/
bool
nfc_target_init (nfc_device_t * pnd, nfc_target_t * pnt, byte_t * pbtRx, size_t * pszRx)
{
// Disallow invalid frame
if (!nfc_configure (pnd, NDO_ACCEPT_INVALID_FRAMES, false))
return false;
// Disallow multiple frames
if (!nfc_configure (pnd, NDO_ACCEPT_MULTIPLE_FRAMES, false))
return false;
// Make sure we reset the CRC and parity to chip handling.
if (!nfc_configure (pnd, NDO_HANDLE_CRC, true))
return false;
if (!nfc_configure (pnd, NDO_HANDLE_PARITY, true))
return false;
// Activate "easy framing" feature by default
if (!nfc_configure (pnd, NDO_EASY_FRAMING, true))
return false;
// Deactivate the CRYPTO1 cipher, it may could cause problems when still active
if (!nfc_configure (pnd, NDO_ACTIVATE_CRYPTO1, false))
return false;
// Drop explicitely the field
if (!nfc_configure (pnd, NDO_ACTIVATE_FIELD, false))
return false;
HAL (target_init, pnd, pnt, pbtRx, pszRx);
}
/**
* @brief Turn NFC device in idle mode
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
*
* This function switch the device in idle mode.
* In initiator mode, the RF field is turned off and the device is set to low power mode (if avaible);
* In target mode, the emulation is stoped (no target available from external initiator) and the device is set to low power mode (if avaible).
*/
bool
nfc_idle (nfc_device_t * pnd)
{
HAL (idle, pnd);
}
/**
* @brief Abort current running command
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
*
* Some commands (ie. nfc_target_init()) are blocking functions and will return only in particular conditions (ie. external initiator request).
* This function attempt to abort the current running command.
*
* @note The blocking function (ie. nfc_target_init()) will failed with DEABORT error.
*/
bool
nfc_abort_command (nfc_device_t * pnd)
{
HAL (abort_command, pnd);
}
/**
* @brief Send bytes and APDU frames
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param pbtTx pointer to Tx buffer
* @param szTx size of Tx buffer
*
* This function make the NFC device (configured as \e target) send byte frames
* (e.g. APDU responses) to the \e initiator.
*/
bool
nfc_target_send_bytes (nfc_device_t * pnd, const byte_t * pbtTx, const size_t szTx)
{
HAL (target_send_bytes, pnd, pbtTx, szTx);
}
/**
* @brief Receive bytes and APDU frames
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
* @param pnd \a nfc_device_t struct pointer that represent currently used device
* @param[out] pbtRx pointer to Rx buffer
* @param[out] pszRx received byte count
*
* This function retrieves bytes frames (e.g. ADPU) sent by the \e initiator to the NFC device (configured as \e target).
*/
bool
nfc_target_receive_bytes (nfc_device_t * pnd, byte_t * pbtRx, size_t * pszRx)
{
HAL (target_receive_bytes, pnd, pbtRx, pszRx);
}
/**
* @brief Send raw bit-frames
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* This function can be used to transmit (raw) bit-frames to the \e initiator
* using the specified NFC device (configured as \e target).
*/
bool
nfc_target_send_bits (nfc_device_t * pnd, const byte_t * pbtTx, const size_t szTxBits, const byte_t * pbtTxPar)
{
HAL (target_send_bits, pnd, pbtTx, szTxBits, pbtTxPar);
}
/**
* @brief Receive bit-frames
* @return Returns \c true if action was successfully performed; otherwise returns \c false.
*
* This function makes it possible to receive (raw) bit-frames. It returns all
* the messages that are stored in the FIFO buffer of the \e PN53x chip. It
* does not require to send any frame and thereby could be used to snoop frames
* that are transmitted by a nearby \e initiator. @note Check out the
* NDO_ACCEPT_MULTIPLE_FRAMES configuration option to avoid losing transmitted
* frames.
*/
bool
nfc_target_receive_bits (nfc_device_t * pnd, byte_t * pbtRx, size_t * pszRxBits, byte_t * pbtRxPar)
{
HAL (target_receive_bits, pnd, pbtRx, pszRxBits, pbtRxPar);
}
/**
* @brief Return the PCD error string
* @return Returns a string
*/
const char *
nfc_strerror (const nfc_device_t * pnd)
{
return pnd->driver->strerror (pnd);
}
/**
* @brief Renders the PCD error in pcStrErrBuf for a maximum size of szBufLen chars
* @return Returns 0 upon success
*/
int
nfc_strerror_r (const nfc_device_t * pnd, char *pcStrErrBuf, size_t szBufLen)
{
return (snprintf (pcStrErrBuf, szBufLen, "%s", nfc_strerror (pnd)) < 0) ? -1 : 0;
}
/**
* @brief Display the PCD error a-la perror
*/
void
nfc_perror (const nfc_device_t * pnd, const char *pcString)
{
fprintf (stderr, "%s: %s\n", pcString, nfc_strerror (pnd));
}
/* Special data accessors */
/**
* @brief Returns the device name
* @return Returns a string with the device name
*/
const char *
nfc_device_name (nfc_device_t * pnd)
{
return pnd->acName;
}
/* Misc. functions */
/**
* @brief Returns the library version
* @return Returns a string with the library version
*/
const char *
nfc_version (void)
{
#ifdef SVN_REVISION
return PACKAGE_VERSION " (r" SVN_REVISION ")";
#else
return PACKAGE_VERSION;
#endif // SVN_REVISION
}