libnfc/utils/nfc-mfclassic.c
quantum-x b5684c1755 Removing typo
Removing typo
2015-11-03 18:33:53 +01:00

732 lines
23 KiB
C

/*-
* Free/Libre Near Field Communication (NFC) library
*
* Libnfc historical contributors:
* Copyright (C) 2009 Roel Verdult
* Copyright (C) 2009-2013 Romuald Conty
* Copyright (C) 2010-2012 Romain Tartière
* Copyright (C) 2010-2013 Philippe Teuwen
* Copyright (C) 2012-2013 Ludovic Rousseau
* See AUTHORS file for a more comprehensive list of contributors.
* Additional contributors of this file:
* Copyright (C) 2011-2013 Adam Laurie
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2 )Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Note that this license only applies on the examples, NFC library itself is under LGPL
*
*/
/**
* @file nfc-mfclassic.c
* @brief MIFARE Classic manipulation example
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif // HAVE_CONFIG_H
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>
#include <nfc/nfc.h>
#include "mifare.h"
#include "nfc-utils.h"
static nfc_context *context;
static nfc_device *pnd;
static nfc_target nt;
static mifare_param mp;
static mifare_classic_tag mtKeys;
static mifare_classic_tag mtDump;
static bool bUseKeyA;
static bool bUseKeyFile;
static bool bForceKeyFile;
static bool bTolerateFailures;
static bool bFormatCard;
static bool magic2 = false;
static uint8_t uiBlocks;
static uint8_t keys[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5,
0x4d, 0x3a, 0x99, 0xc3, 0x51, 0xdd,
0x1a, 0x98, 0x2c, 0x7e, 0x45, 0x9a,
0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xab, 0xcd, 0xef, 0x12, 0x34, 0x56
};
static uint8_t default_key[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static uint8_t default_acl[] = {0xff, 0x07, 0x80, 0x69};
static const nfc_modulation nmMifare = {
.nmt = NMT_ISO14443A,
.nbr = NBR_106,
};
static size_t num_keys = sizeof(keys) / 6;
#define MAX_FRAME_LEN 264
static uint8_t abtRx[MAX_FRAME_LEN];
static int szRxBits;
uint8_t abtHalt[4] = { 0x50, 0x00, 0x00, 0x00 };
// special unlock command
uint8_t abtUnlock1[1] = { 0x40 };
uint8_t abtUnlock2[1] = { 0x43 };
static bool
transmit_bits(const uint8_t *pbtTx, const size_t szTxBits)
{
// Show transmitted command
printf("Sent bits: ");
print_hex_bits(pbtTx, szTxBits);
// Transmit the bit frame command, we don't use the arbitrary parity feature
if ((szRxBits = nfc_initiator_transceive_bits(pnd, pbtTx, szTxBits, NULL, abtRx, sizeof(abtRx), NULL)) < 0)
return false;
// Show received answer
printf("Received bits: ");
print_hex_bits(abtRx, szRxBits);
// Succesful transfer
return true;
}
static bool
transmit_bytes(const uint8_t *pbtTx, const size_t szTx)
{
// Show transmitted command
printf("Sent bits: ");
print_hex(pbtTx, szTx);
// Transmit the command bytes
int res;
if ((res = nfc_initiator_transceive_bytes(pnd, pbtTx, szTx, abtRx, sizeof(abtRx), 0)) < 0)
return false;
// Show received answer
printf("Received bits: ");
print_hex(abtRx, res);
// Succesful transfer
return true;
}
static void
print_success_or_failure(bool bFailure, uint32_t *uiBlockCounter)
{
printf("%c", (bFailure) ? 'x' : '.');
if (uiBlockCounter && !bFailure)
*uiBlockCounter += 1;
}
static bool
is_first_block(uint32_t uiBlock)
{
// Test if we are in the small or big sectors
if (uiBlock < 128)
return ((uiBlock) % 4 == 0);
else
return ((uiBlock) % 16 == 0);
}
static bool
is_trailer_block(uint32_t uiBlock)
{
// Test if we are in the small or big sectors
if (uiBlock < 128)
return ((uiBlock + 1) % 4 == 0);
else
return ((uiBlock + 1) % 16 == 0);
}
static uint32_t
get_trailer_block(uint32_t uiFirstBlock)
{
// Test if we are in the small or big sectors
uint32_t trailer_block = 0;
if (uiFirstBlock < 128) {
trailer_block = uiFirstBlock + (3 - (uiFirstBlock % 4));
} else {
trailer_block = uiFirstBlock + (15 - (uiFirstBlock % 16));
}
return trailer_block;
}
static bool
authenticate(uint32_t uiBlock)
{
mifare_cmd mc;
uint32_t uiTrailerBlock;
// Set the authentication information (uid)
memcpy(mp.mpa.abtAuthUid, nt.nti.nai.abtUid + nt.nti.nai.szUidLen - 4, 4);
// Should we use key A or B?
mc = (bUseKeyA) ? MC_AUTH_A : MC_AUTH_B;
// Key file authentication.
if (bUseKeyFile) {
// Locate the trailer (with the keys) used for this sector
uiTrailerBlock = get_trailer_block(uiBlock);
// Extract the right key from dump file
if (bUseKeyA)
memcpy(mp.mpa.abtKey, mtKeys.amb[uiTrailerBlock].mbt.abtKeyA, 6);
else
memcpy(mp.mpa.abtKey, mtKeys.amb[uiTrailerBlock].mbt.abtKeyB, 6);
// Try to authenticate for the current sector
if (nfc_initiator_mifare_cmd(pnd, mc, uiBlock, &mp))
return true;
}
// If formatting or not using key file, try to guess the right key
if (bFormatCard || !bUseKeyFile) {
for (size_t key_index = 0; key_index < num_keys; key_index++) {
memcpy(mp.mpa.abtKey, keys + (key_index * 6), 6);
if (nfc_initiator_mifare_cmd(pnd, mc, uiBlock, &mp)) {
if (bUseKeyA)
memcpy(mtKeys.amb[uiBlock].mbt.abtKeyA, &mp.mpa.abtKey, 6);
else
memcpy(mtKeys.amb[uiBlock].mbt.abtKeyB, &mp.mpa.abtKey, 6);
return true;
}
if (nfc_initiator_select_passive_target(pnd, nmMifare, nt.nti.nai.abtUid, nt.nti.nai.szUidLen, NULL) <= 0) {
ERR("tag was removed");
return false;
}
}
}
return false;
}
static bool
unlock_card(void)
{
// Configure the CRC
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return false;
}
// Use raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return false;
}
iso14443a_crc_append(abtHalt, 2);
transmit_bytes(abtHalt, 4);
// now send unlock
if (!transmit_bits(abtUnlock1, 7)) {
printf("unlock failure!\n");
return false;
}
if (!transmit_bytes(abtUnlock2, 1)) {
printf("unlock failure!\n");
return false;
}
// reset reader
// Configure the CRC
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
return false;
}
// Switch off raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
return false;
}
return true;
}
static int
get_rats(void)
{
int res;
uint8_t abtRats[2] = { 0xe0, 0x50};
// Use raw send/receive methods
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return -1;
}
res = nfc_initiator_transceive_bytes(pnd, abtRats, sizeof(abtRats), abtRx, sizeof(abtRx), 0);
if (res > 0) {
// ISO14443-4 card, turn RF field off/on to access ISO14443-3 again
if (nfc_device_set_property_bool(pnd, NP_ACTIVATE_FIELD, false) < 0) {
nfc_perror(pnd, "nfc_configure");
return -1;
}
if (nfc_device_set_property_bool(pnd, NP_ACTIVATE_FIELD, true) < 0) {
nfc_perror(pnd, "nfc_configure");
return -1;
}
}
// Reselect tag
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("Error: tag disappeared\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
return res;
}
static bool
read_card(int read_unlocked)
{
int32_t iBlock;
bool bFailure = false;
uint32_t uiReadBlocks = 0;
if (read_unlocked) {
//If the user is attempting an unlocked read, but has a direct-write type magic card, they don't
//need to use the R mode. We'll trigger a warning and let them proceed.
if (magic2) {
printf("Note: This card does not require an unlocked write (R) \n");
} else {
//If User has requested an unlocked read, but we're unable to unlock the card, we'll error out.
if (!unlock_card()) {
return false;
}
}
printf("Reading out %d blocks |", uiBlocks + 1);
// Read the card from end to begin
for (iBlock = uiBlocks; iBlock >= 0; iBlock--) {
// Authenticate everytime we reach a trailer block
if (is_trailer_block(iBlock)) {
if (bFailure) {
// When a failure occured we need to redo the anti-collision
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("!\nError: tag was removed\n");
return false;
}
bFailure = false;
}
fflush(stdout);
// Try to authenticate for the current sector
if (!read_unlocked && !authenticate(iBlock)) {
printf("!\nError: authentication failed for block 0x%02x\n", iBlock);
return false;
}
// Try to read out the trailer
if (nfc_initiator_mifare_cmd(pnd, MC_READ, iBlock, &mp)) {
if (read_unlocked) {
memcpy(mtDump.amb[iBlock].mbd.abtData, mp.mpd.abtData, 16);
} else {
// Copy the keys over from our key dump and store the retrieved access bits
memcpy(mtDump.amb[iBlock].mbt.abtKeyA, mtKeys.amb[iBlock].mbt.abtKeyA, 6);
memcpy(mtDump.amb[iBlock].mbt.abtAccessBits, mp.mpd.abtData + 6, 4);
memcpy(mtDump.amb[iBlock].mbt.abtKeyB, mtKeys.amb[iBlock].mbt.abtKeyB, 6);
}
} else {
printf("!\nfailed to read trailer block 0x%02x\n", iBlock);
bFailure = true;
}
} else {
// Make sure a earlier readout did not fail
if (!bFailure) {
// Try to read out the data block
if (nfc_initiator_mifare_cmd(pnd, MC_READ, iBlock, &mp)) {
memcpy(mtDump.amb[iBlock].mbd.abtData, mp.mpd.abtData, 16);
} else {
printf("!\nError: unable to read block 0x%02x\n", iBlock);
bFailure = true;
}
}
}
// Show if the readout went well for each block
print_success_or_failure(bFailure, &uiReadBlocks);
if ((! bTolerateFailures) && bFailure)
return false;
}
printf("|\n");
printf("Done, %d of %d blocks read.\n", uiReadBlocks, uiBlocks + 1);
fflush(stdout);
return true;
}
static bool
write_card(int write_block_zero)
{
uint32_t uiBlock;
bool bFailure = false;
uint32_t uiWriteBlocks = 0;
if (write_block_zero) {
//If the user is attempting an unlocked write, but has a direct-write type magic card, they don't
//need to use the W mode. We'll trigger a warning and let them proceed.
if (magic2) {
printf("Note: This card does not require an unlocked write (W) \n");
} else {
//If User has requested an unlocked write, but we're unable to unlock the card, we'll error out.
if (!unlock_card()) {
return false;
}
}
printf("Writing %d blocks |", uiBlocks + 1);
// Write the card from begin to end;
for (uiBlock = 0; uiBlock <= uiBlocks; uiBlock++) {
// Authenticate everytime we reach the first sector of a new block
if (is_first_block(uiBlock)) {
if (bFailure) {
// When a failure occured we need to redo the anti-collision
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("!\nError: tag was removed\n");
return false;
}
bFailure = false;
}
fflush(stdout);
// Try to authenticate for the current sector
if (!write_block_zero && !authenticate(uiBlock) && !bTolerateFailures) {
printf("!\nError: authentication failed for block %02x\n", uiBlock);
return false;
}
}
if (is_trailer_block(uiBlock)) {
if (bFormatCard) {
// Copy the default key and reset the access bits
memcpy(mp.mpd.abtData, default_key, 6);
memcpy(mp.mpd.abtData + 6, default_acl, 4);
memcpy(mp.mpd.abtData + 10, default_key, 6);
} else {
// Copy the keys over from our key dump and store the retrieved access bits
memcpy(mp.mpd.abtData, mtDump.amb[uiBlock].mbt.abtKeyA, 6);
memcpy(mp.mpd.abtData + 6, mtDump.amb[uiBlock].mbt.abtAccessBits, 4);
memcpy(mp.mpd.abtData + 10, mtDump.amb[uiBlock].mbt.abtKeyB, 6);
}
// Try to write the trailer
if (nfc_initiator_mifare_cmd(pnd, MC_WRITE, uiBlock, &mp) == false) {
printf("failed to write trailer block %d \n", uiBlock);
bFailure = true;
}
} else {
// The first block 0x00 is read only, skip this
if (uiBlock == 0 && ! write_block_zero && ! magic2)
continue;
// Make sure a earlier write did not fail
if (!bFailure) {
// Try to write the data block
if (bFormatCard && uiBlock)
memset(mp.mpd.abtData, 0x00, 16);
else
memcpy(mp.mpd.abtData, mtDump.amb[uiBlock].mbd.abtData, 16);
// do not write a block 0 with incorrect BCC - card will be made invalid!
if (uiBlock == 0) {
if ((mp.mpd.abtData[0] ^ mp.mpd.abtData[1] ^ mp.mpd.abtData[2] ^ mp.mpd.abtData[3] ^ mp.mpd.abtData[4]) != 0x00 && !magic2) {
printf("!\nError: incorrect BCC in MFD file!\n");
printf("Expecting BCC=%02X\n", mp.mpd.abtData[0] ^ mp.mpd.abtData[1] ^ mp.mpd.abtData[2] ^ mp.mpd.abtData[3]);
return false;
}
}
if (!nfc_initiator_mifare_cmd(pnd, MC_WRITE, uiBlock, &mp))
bFailure = true;
}
}
// Show if the write went well for each block
print_success_or_failure(bFailure, &uiWriteBlocks);
if ((! bTolerateFailures) && bFailure)
return false;
}
printf("|\n");
printf("Done, %d of %d blocks written.\n", uiWriteBlocks, uiBlocks + 1);
fflush(stdout);
return true;
}
typedef enum {
ACTION_READ,
ACTION_WRITE,
ACTION_USAGE
} action_t;
static void
print_usage(const char *pcProgramName)
{
printf("Usage: ");
printf("%s f|r|R|w|W a|b <dump.mfd> [<keys.mfd> [f]]\n", pcProgramName);
printf(" f|r|R|w|W - Perform format (f) or read from (r) or unlocked read from (R) or write to (w) or unlocked write to (W) card\n");
printf(" *** format will reset all keys to FFFFFFFFFFFF and all data to 00 and all ACLs to default\n");
printf(" *** unlocked read does not require authentication and will reveal A and B keys\n");
printf(" *** note that unlocked write will attempt to overwrite block 0 including UID\n");
printf(" *** unlocking only works with special Mifare 1K cards (Chinese clones)\n");
printf(" a|A|b|B - Use A or B keys for action; Halt on errors (a|b) or tolerate errors (A|B)\n");
printf(" <dump.mfd> - MiFare Dump (MFD) used to write (card to MFD) or (MFD to card)\n");
printf(" <keys.mfd> - MiFare Dump (MFD) that contain the keys (optional)\n");
printf(" f - Force using the keyfile even if UID does not match (optional)\n");
printf("Examples: \n\n");
printf(" Read card to file, using key A:\n\n");
printf(" %s r a mycard.mfd\n\n", pcProgramName);
printf(" Write file to blank card, using key A:\n\n");
printf(" %s w a mycard.mfd\n\n", pcProgramName);
printf(" Write new data and/or keys to previously written card, using key A:\n\n");
printf(" %s w a newdata.mfd mycard.mfd\n\n", pcProgramName);
printf(" Format/wipe card (note two passes required to ensure writes for all ACL cases):\n\n");
printf(" %s f A dummy.mfd keyfile.mfd f\n", pcProgramName);
printf(" %s f B dummy.mfd keyfile.mfd f\n\n", pcProgramName);
}
int
main(int argc, const char *argv[])
{
action_t atAction = ACTION_USAGE;
uint8_t *pbtUID;
int unlock = 0;
if (argc < 2) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
const char *command = argv[1];
if (strcmp(command, "r") == 0 || strcmp(command, "R") == 0) {
if (argc < 4) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
atAction = ACTION_READ;
if (strcmp(command, "R") == 0)
unlock = 1;
bUseKeyA = tolower((int)((unsigned char) * (argv[2]))) == 'a';
bTolerateFailures = tolower((int)((unsigned char) * (argv[2]))) != (int)((unsigned char) * (argv[2]));
bUseKeyFile = (argc > 4);
bForceKeyFile = ((argc > 5) && (strcmp((char *)argv[5], "f") == 0));
} else if (strcmp(command, "w") == 0 || strcmp(command, "W") == 0 || strcmp(command, "f") == 0) {
if (argc < 4) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
atAction = ACTION_WRITE;
if (strcmp(command, "W") == 0)
unlock = 1;
bFormatCard = (strcmp(command, "f") == 0);
bUseKeyA = tolower((int)((unsigned char) * (argv[2]))) == 'a';
bTolerateFailures = tolower((int)((unsigned char) * (argv[2]))) != (int)((unsigned char) * (argv[2]));
bUseKeyFile = (argc > 4);
bForceKeyFile = ((argc > 5) && (strcmp((char *)argv[5], "f") == 0));
}
if (atAction == ACTION_USAGE) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
// We don't know yet the card size so let's read only the UID from the keyfile for the moment
if (bUseKeyFile) {
FILE *pfKeys = fopen(argv[4], "rb");
if (pfKeys == NULL) {
printf("Could not open keys file: %s\n", argv[4]);
exit(EXIT_FAILURE);
}
if (fread(&mtKeys, 1, 4, pfKeys) != 4) {
printf("Could not read UID from key file: %s\n", argv[4]);
fclose(pfKeys);
exit(EXIT_FAILURE);
}
fclose(pfKeys);
}
nfc_init(&context);
if (context == NULL) {
ERR("Unable to init libnfc (malloc)");
exit(EXIT_FAILURE);
}
// Try to open the NFC reader
pnd = nfc_open(context, NULL);
if (pnd == NULL) {
ERR("Error opening NFC reader");
nfc_exit(context);
exit(EXIT_FAILURE);
}
if (nfc_initiator_init(pnd) < 0) {
nfc_perror(pnd, "nfc_initiator_init");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
};
// Let the reader only try once to find a tag
if (nfc_device_set_property_bool(pnd, NP_INFINITE_SELECT, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Disable ISO14443-4 switching in order to read devices that emulate Mifare Classic with ISO14443-4 compliance.
if (nfc_device_set_property_bool(pnd, NP_AUTO_ISO14443_4, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
printf("NFC reader: %s opened\n", nfc_device_get_name(pnd));
// Try to find a MIFARE Classic tag
if (nfc_initiator_select_passive_target(pnd, nmMifare, NULL, 0, &nt) <= 0) {
printf("Error: no tag was found\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
// Test if we are dealing with a MIFARE compatible tag
if ((nt.nti.nai.btSak & 0x08) == 0) {
printf("Warning: tag is probably not a MFC!\n");
}
// Get the info from the current tag
pbtUID = nt.nti.nai.abtUid;
if (bUseKeyFile) {
uint8_t fileUid[4];
memcpy(fileUid, mtKeys.amb[0].mbm.abtUID, 4);
// Compare if key dump UID is the same as the current tag UID, at least for the first 4 bytes
if (memcmp(pbtUID, fileUid, 4) != 0) {
printf("Expected MIFARE Classic card with UID starting as: %02x%02x%02x%02x\n",
fileUid[0], fileUid[1], fileUid[2], fileUid[3]);
printf("Got card with UID starting as: %02x%02x%02x%02x\n",
pbtUID[0], pbtUID[1], pbtUID[2], pbtUID[3]);
if (! bForceKeyFile) {
printf("Aborting!\n");
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
}
}
printf("Found MIFARE Classic card:\n");
print_nfc_target(&nt, false);
// Guessing size
if ((nt.nti.nai.abtAtqa[1] & 0x02) == 0x02)
// 4K
uiBlocks = 0xff;
else if ((nt.nti.nai.btSak & 0x01) == 0x01)
// 320b
uiBlocks = 0x13;
else
// 1K/2K, checked through RATS
uiBlocks = 0x3f;
// Testing RATS
int res;
if ((res = get_rats()) > 0) {
if ((res >= 10) && (abtRx[5] == 0xc1) && (abtRx[6] == 0x05)
&& (abtRx[7] == 0x2f) && (abtRx[8] == 0x2f)
&& ((nt.nti.nai.abtAtqa[1] & 0x02) == 0x00)) {
// MIFARE Plus 2K
uiBlocks = 0x7f;
}
// Chinese magic emulation card, ATS=0978009102:dabc1910
if ((res == 9) && (abtRx[5] == 0xda) && (abtRx[6] == 0xbc)
&& (abtRx[7] == 0x19) && (abtRx[8] == 0x10)) {
magic2 = true;
}
}
printf("Guessing size: seems to be a %i-byte card\n", (uiBlocks + 1) * 16);
if (bUseKeyFile) {
FILE *pfKeys = fopen(argv[4], "rb");
if (pfKeys == NULL) {
printf("Could not open keys file: %s\n", argv[4]);
exit(EXIT_FAILURE);
}
if (fread(&mtKeys, 1, (uiBlocks + 1) * sizeof(mifare_classic_block), pfKeys) != (uiBlocks + 1) * sizeof(mifare_classic_block)) {
printf("Could not read keys file: %s\n", argv[4]);
fclose(pfKeys);
exit(EXIT_FAILURE);
}
fclose(pfKeys);
}
if (atAction == ACTION_READ) {
memset(&mtDump, 0x00, sizeof(mtDump));
} else {
FILE *pfDump = fopen(argv[3], "rb");
if (pfDump == NULL) {
printf("Could not open dump file: %s\n", argv[3]);
exit(EXIT_FAILURE);
}
if (fread(&mtDump, 1, (uiBlocks + 1) * sizeof(mifare_classic_block), pfDump) != (uiBlocks + 1) * sizeof(mifare_classic_block)) {
printf("Could not read dump file: %s\n", argv[3]);
fclose(pfDump);
exit(EXIT_FAILURE);
}
fclose(pfDump);
}
// printf("Successfully opened required files\n");
if (atAction == ACTION_READ) {
if (read_card(unlock)) {
printf("Writing data to file: %s ...", argv[3]);
fflush(stdout);
FILE *pfDump = fopen(argv[3], "wb");
if (pfDump == NULL) {
printf("Could not open dump file: %s\n", argv[3]);
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
if (fwrite(&mtDump, 1, (uiBlocks + 1) * sizeof(mifare_classic_block), pfDump) != ((uiBlocks + 1) * sizeof(mifare_classic_block))) {
printf("\nCould not write to file: %s\n", argv[3]);
fclose(pfDump);
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_FAILURE);
}
printf("Done.\n");
fclose(pfDump);
}
} else if (atAction == ACTION_WRITE) {
write_card(unlock);
}
nfc_close(pnd);
nfc_exit(context);
exit(EXIT_SUCCESS);
}